Peer-Reviewed Journal Publications:
[1] U. Mishra, M. A. Ansari, A. Chaurasiya, A. K. Singh, and D. Panda, “Transparent, fluorophore-doped cellulose nanocrystal films prepared from crop residue: Superior radiative cooler and organic photodetector,” ACS Sustainable Chemistry & Engineering, vol. 13, no. 5, pp. 2086–2096, 2025.
[2] A. Chaurasiya, U. Mishra, Arvind, A. K. Singh*, and D. Panda, “Ultra-fast humidity sensor for breath monitoring using flexible and organic nanocellulose film derived from banana trunk,” IEEE Sensors Letters, vol. 9, no. 7, pp. 1–4, Jul. 2025, Art no. 4501104.
[3] S. Kumar, R. Kumar, V. Yadav, S. Kumar, M. F. Carrasco, A. K. Singh*, and U. Kumar, “Structural insights, bond-valence analysis, and enhanced microwave dielectric properties of (Sr1-xNdx)2SnO4 Ruddlesden-Popper oxides,” Journal of Materials Science: Materials in Electronics, vol. 36, Art no. 1069, 2025.
[4] A. K. Singh* and U. Kumar, “Phase and structural nanoarchitectonics of Ce-doped Sr2SnO4 for improved microwave dielectric and electrical properties,” Applied Physics A, 2025.
[5] M. S. Mehrolia, D. Kumar, A. Verma, and A. K. Singh*, “Fabrication and compact modeling of low-voltage flexible organic TFT using self-assembly of conductive polymer channel over high-PMMA/SrZrO dielectric,” IEEE Trans. Electron Devices, vol. 71, no. 10, pp. 6055–6060, Oct. 2024, DOI: 10.1109/TED.2024.3442165.
[6] M. S. Mehrolia, A. Verma, N. K. Chourasia, A. Pandey, and A. K. Singh*, “A proposed fully transparent, flexible, and compact modeled low voltage TFT for implementation of full adder and subtractor,” IEEE J. Flexible Electronics, vol. 3, no. 11, pp. 477–483, Nov. 2024.
[7] M. S. Mehrolia, D. Kumar, A. Verma, and A. K. Singh*, “Fabrication and characterization of self-assembled low voltage operated OTFT for H2S gas sensor for oil and gas industry,” IEEE Trans. Electron Devices, vol. 71, no. 1, pp. 769–776, 2024, DOI: 10.1109/TED.2023.3336301.
[8] M. S. Mehrolia, A. Verma, and A. K. Singh*, “Comparative analysis of compact modeled low-voltage OTFTs on flexible and silicon substrates for the implementation of logic circuits,” IEEE J. Flexible Electronics, vol. 3, no. 7, pp. 341–347, Jul. 2024.
[9] A. Rawat, A. K. Singh, S. Kumar, G. Rajput, R. K. Chourasia, and N. K. Chourasia, “Highly sensitive Ti3C2Tx/MoSe2 (2-D/quasi-2-D) heterojunction-based photodetector,” IEEE Sensors J., vol. 24, no. 24, pp. 40641–40647, Dec. 15, 2024.
[10] M. Jatiya, V. Yadav, U. Kumar, A. K. Singh, and Shalu, “Structural, microstructure, dielectric relaxation, and AC conduction studies of perovskite SrSnO3 and Ruddlesden–Popper oxide Sr2SnO4,” Phys. Chem., vol. 26, pp. 5387–5398, 2024, DOI: 10.1039/D3CP05781J.
[11] R. Suthar, A. T, H. Dahiya, A. K. Singh, G. D. Sharma, and S. Karak, “Role of exciton lifetime, energetic offsets, and disorder in voltage loss of bulk heterojunction organic solar cells,” ACS Appl. Mater. Interfaces, vol. 15, no. 2, pp. 3214–3223, 2023, DOI: 10.1021/acsami.2c18199.
[12] S. Kumar, V. Gautam, A. K. Singh, G. K. Maurya, S. Singh, and P. Kumar, “Liquid phase exfoliated 2-D based broadband heterojunction low-powered photosensor,” IEEE Trans. Electron Devices, vol. 70, no. 3, pp. 1149–1155, 2023, DOI: 10.1109/TED.2023.3239041.
[13] H. Dahiya, A. Agrawal, G. D. Sharma, and A. K. Singh*, “Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector,” J. Semicond., vol. 43, no. 9, p. 092302, 2022, DOI: 10.1088/1674-4926/43/9/092302.
[14] A. K. Singh, A. Pandey, and P. Chakrabarti, “Fabrication, characterization and application of CuO nanowires as electrode for ammonia sensing in aqueous environment using extended gate-FET,” IEEE Sensors J., vol. 21, no. 5, 2021, DOI: 10.1109/JSEN.2020.304.
[15] A. K. Singh, A. D. Dwivedi, A. Pandey, and P. Chakrabarti, “Design and implementation of an inverter and its application in ring oscillator circuits using an organic-thin-film-transistor based on an FTM-derived channel,” Semicond. Sci. Technol., vol. 36, no. 12, p. 125006, 2021.
[16] A. K. Singh, A. Pandey, and P. Chakrabarti, “Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2b]thiophene] organic polymer based interdigitated channel enabled thin film transistor for detection of selective low ppm ammonia sensing at 25°C,” IEEE Sensors J., vol. 20, no. 8, pp. 4047–4055, 2020, DOI: 10.1109/JSEN.2019.2963269.
[17] A. K. Singh, N. Chourasia, B. N. Pal, A. Pandey, and P. Chakrabarti, “Low operating voltage solution-processed dielectric (Li2ZnO2) and (SnO2) channel based medium wave UV-B phototransistor for application in phototherapy,” IEEE Trans. Electron Devices, vol. 67, no. 5, pp. 2028–2034, 2020, DOI: 10.1109/TED.2020.2978536.
[18] A. K. Singh, A. Pandey, and P. Chakrabarti, “A green-light sensitive Au/PBTTT-C14/OTS/SiO2/Si/Ag MOS capacitor,” IEEE Photonics Technol. Lett., vol. 32, no. 17, pp. 1045–1048, 2020, DOI: 10.1109/LPT.2020.3011583.
[19] A. K. Singh, N. Chourasia, B. N. Pal, A. Pandey, and P. Chakrabarti, “A proposed all ZnO based thin film transistor for UV detection,” IEEE Photonics Technol. Lett., vol. 32, no. 24, pp. 1548–1551, 2020, DOI: 10.1109/LPT.2020.3039972.
[20] N. K. Chourasia, A. K. Singh, S. Rai, A. Sharma, A. Srivastava, and P. Chakrabarti, “Low operating voltage large channel length graphene FET for ambient atmosphere low concentration ammonia gas sensor,” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4385–4391, 2020.
[21] A. K. Singh, A. Pandey, and P. Chakrabarti, “Fabrication, modelling and characterization of green light photosensitive p-channel - poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] organic semiconductor-based phototransistors,” Organic Electronics, vol. 75, Art no. 105424, 2019, DOI: 10.1016/j.orgel.2019.105424.