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Abstract: 

 

Physical systems of interest often exhibit complexity stemming from the interaction of various 

processes operating at different temporal and spatial scales, resulting in stiff systems of equations 

that pose significant numerical challenges. Developing efficient numerical methods that exploit the 

problem structure and sources of stiffness requires diligent effort and care, enabling cost-effective 

simulations in relevant parameter regimes. While implicit-explicit and fully implicit methods are 

popular solutions for handling stiff systems by taking larger time steps and solving nonlinear 

equations, they may require the use of complex linear algebra solvers and result in high 

computational costs. Hence, there is a need to explore alternative time integration methods that do 

not rely on linear algebra solvers and minimize computational complexity and CPU time. 

 

Chapter 1 presents a novel class of computationally explicit Runge-Kutta methods that can 

effectively solve stiff convection-diffusion equations. Unlike traditional implicit methods, the 

developed methods do not require the inversion of a coefficient matrix, making it computationally 

efficient. The numerical properties of the methods were evaluated using Fourier stability analysis 

for a model stiff convection-diffusion equation. The accuracy and efficiency of the developed 

methods were further assessed by solving compressible Navier-Stokes equation for benchmark 

problems in computational aeroacoustics, such as laminar flow over stationary and rotationally 

oscillating cylinders and a NACA0012 airfoil. The computed results were compared with previous 

direct numerical simulation studies and experimental data, and they demonstrated good agreement. 

To evaluate the performance of the developed methods, numerical simulations using the classical 

four-stage Runge-Kutta method were also carried out. The present methods were found to be 

competitive with the classical Rune-Kutta and low dispersion and dissipation Runge-Kutta methods 

in terms of numerical accuracy while being more computationally efficient. Spatial derivatives are 

discretized using compact schemes. The developed methods also effectively captured flow details 

related to three-dimensional supersonic flow past a sphere. Therefore, the developed methods offer 

promising time-integration schemes for analyzing unsteady problems governed by stiff systems 

with better computational performance.  

 

In Chapter 2, we built upon the concepts established in Chapter 1 and created a novel class of 

computationally explicit Runge-Kutta methods for nonlinear reaction-diffusion systems, which 

address stiffness in both the reaction and diffusion terms. These methods don't require matrix 

inversions and as a result, have low computational costs. The methods' accuracy and efficiency are 

assessed using Fourier analysis and discrete maximum absolute errors for a linear reaction-diffusion 

model equation, and excellent agreement with exact solutions is obtained. To demonstrate the 

methods' applicability, we simulated a range of nonlinear stiff reaction-diffusion systems, including 

phase separation governed by the Allen-Cahn equation, the Schnakenberg model for reaction 

kinetics, and predicting the morphology of electrodeposition at the interface. We compared our 

numerical results with those from computational and experimental studies in the literature and 

found good agreement. These findings show that the proposed methods are valid and effective for 

simulating a broad range of complex reaction-diffusion systems, and they offer computational 

efficiency and accuracy superior to traditional methods. 

 

Chapter 3 builds on the concepts introduced in Chapters 1 and 2 to develop time-marching 

techniques for solving systems of stiff convection-diffusion-reaction equations (CDREs). Fourier 

analysis is used to evaluate the stability properties of the methods for both one-dimensional and 



two-dimensional CDREs, and appropriate values for the free parameters are identified to eliminate 

the unstable region associated with the explicit Runge-Kutta method. The accuracy and efficiency 

of the methods are demonstrated by solving various one-dimensional unsteady inhomogeneous 

CDREs with different grid Fourier and reaction numbers. The results obtained show excellent 

agreement with the exact solutions, even for high values of grid Fourier number (Fo). The 

effectiveness of the methods is further demonstrated by solving the contaminant transport model 

with kinetic Langmuir sorption, with the computed solution matching the exact solution available in 

the literature. Finally, the accuracy of the developed methods is demonstrated by simulating pattern 

formations in the two-dimensional chemotaxis model with nonlinear diffusion and volume-filling 

effect, for both single and double eigenvalues. The solutions obtained are compared with analytic 

stationary solutions obtained via weakly nonlinear analysis, and excellent agreement is observed in 

terms of L2 and H1 norms of the error. 

 

In Chapter 4, we have introduced a novel family of two-derivative computationally explicit Runge-

Kutta-Nyström type time-marching methods to simulate stiff wave equations. Compared to the 

Runge-Kutta-Nyström method, our two-derivative methods require only two stages to achieve the 

desired accuracy, resulting in a reduced computational cost. Importantly, the methods do not require 

inverting the discretized system of algebraic equations. Fourier stability analysis has been used to 

verify the accuracy of the methods for the one-dimensional bi-directional wave equation model. To 

demonstrate the robustness and efficiency of the two-derivative methods, we have performed 

numerical simulations of acoustic wave propagation in heterogeneous media consisting of two and 

three layers. Additionally, the accuracy of the two-derivative methods has been validated by 

numerically simulating the damped and undamped cases of the sine-Gordon equation with various 

soliton scenarios. The L∞ and root mean square errors of the two-derivative methods have been 

compared to those reported in the literature, and our results exhibit excellent agreement with the 

soliton behavior. Moreover, while dealing with stiff differential equations, it is vital to have accurate 

and efficient spatial discretization because these equations often involve rapidly varying functions 

that require high resolution in specific regions of the domain. As a result, we formulated higher-

order compact schemes on nonuniform grids to address this issue. The validity of the developed 

methods was verified through simulations of shallow water and Navier-Stokes equations, 

demonstrating promising results for the simulations of flow and wave-propagation problems. 
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