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PREFACE 

The realm of Earth observation, geospatial analysis, and environmental monitoring is 

undergoing a transformative revolution, one that is underpinned by a symphony of 

technological innovation, machine learning prowess, and a collective endeavor to better 

understand and protect our dynamic planet. This journey into "Estimation of Change in 

Land Use/Land Cover (LU/LC) Mapping with Identification of Digital Signature using 

Artificial Intelligence and Machine Learning Techniques over Google Earth Engine" stands 

as a testament to our unwavering curiosity, our commitment to scientific exploration, and 

our dedication to addressing some of the most pressing challenges facing our world today. 

The initial chapter of the thesis serves as the introductory segment of the thesis, offering a 

comprehensive overview of the study area's geographical location, rainfall patterns, 

temperature variations, and water percentage. The research is conducted in a specific region 

whose geographical coordinates are elucidated, outlining its topographical and geological 

features, thereby setting the stage for the ensuing investigations. An extensive analysis of 

historical rainfall data is presented, emphasizing the variability and distribution of 

precipitation across different seasons and years. Concurrently, temperature patterns are 

explored, dissecting both diurnal and seasonal temperature trends, which play an 

instrumental role in shaping the local environment. Furthermore, the chapter delves into the 

water percentage of the study area, encompassing information on surface water bodies, 

groundwater availability, and land use practices. These foundational insights serve as the 

bedrock for the subsequent chapters of the thesis, contributing to a holistic understanding of 

the study area's environmental context. 
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The second chapter of thesis provide introductory of each  embarks on a journey to explore 

the realms of land use/land cover (LU/LC) mapping, focusing on the application of 

machine learning and artificial intelligence (AI) techniques using Google Earth Engine. 

This chapter serves as a foundational framework by meticulously describing, comparing, 

and evaluating various classification algorithms and datasets essential for LU/LC mapping. 

In the arena of classification algorithms, we delve into the intricacies of the methods 

that play a pivotal role in deciphering satellite imagery data. This includes, but is not 

limited to, Classification And Regression Tree (CART), Random Forest (RF), Gradient 

Tree Boost (GTB), and Support Vector Machines (SVM). We dissect each method's 

underlying principles, strengths, and limitations to provide a comprehensive understanding 

of their applicability in the context of LU/LC mapping.  

Furthermore, this chapter pays heed to the selection and comparison of datasets that 

form the bedrock of the research. Datasets, such as Sentinel-2 and Landsat, are scrutinized 

for their spatial and temporal resolutions, spectral bands, and cloud cover percentages. The 

objective is to identify the most suitable datasets that align with the research goals and the 

specific geographic areas of study. 

Chapter three focuses on the core objective of the research, which is the estimation 

and analysis of land cover changes over the Dehradun area. Leveraging advanced AI and 

ML techniques, this chapter engages in a rigorous examination of historical satellite 

imagery data to track, quantify, and understand the dynamics of LU/LC changes over time. 

Urbanization, a significant factor in land cover transformation, is examined with a 

focus on Dehradun. The application of classification algorithms, as discussed in the second 
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chapter, helps delineate the shifts in urban landscapes, urban expansion, and the resultant 

land cover changes. Additionally, the agricultural landscape is scrutinized to reveal the 

patterns and alterations in land use practices. Through a detailed investigation of land cover 

classification, we gain insights into agricultural dynamics and their impact on land cover. 

This chapter forms the first of several regional case studies, providing a detailed 

assessment of LU/LC changes in the Dehradun area. The insights garnered here have the 

potential to influence regional planning and development policies by shedding light on 

evolving land cover patterns. 

Moving forward, the research shifts its lens to the forested regions of Sikkim, a 

critical ecological zone. The fourth chapter employs AI and ML algorithms to identify and 

classify changes in forest cover over a specified time period. 

In this chapter, we dissect the unique challenges posed by forested areas, such as 

dense canopies and complex ecosystems. Techniques for forest change detection are 

explored, including the use of multi-spectral and radar imagery for improved forest cover 

mapping. The chapter also dives into the identification of deforestation and afforestation 

events, which are vital in understanding the ecological health of the Sikkim forests. 

The findings of this chapter serve a dual purpose: contributing to the knowledge of 

biodiversity conservation and enabling sustainable forest management through the 

informed analysis of land cover changes in forested areas. 

Chapter five extends the research's purview to investigate the impact of fire 

incidents on forest cover within the Ernakulam area. Through the utilization of advanced AI 



xx 
 

and ML techniques, we analyze satellite data to identify areas affected by fire damage and 

assess the extent of this impact. 

Detection of fire-affected regions is critical for understanding the ecological and 

environmental implications of fire events. The chapter delves into methodologies for fire 

detection in remote sensing data, discussing thermal bands, spectral indices, and 

normalized burn rate (NBR) as indicators. The results of this analysis not only contribute to 

fire prevention strategies but also inform post-fire ecological restoration efforts. 

By examining forest cover changes due to fire incidents, this chapter extends the 

scope of the research to disaster monitoring and mitigation, playing a significant role in 

understanding the resilience of ecosystems to disturbances. 

The sixth chapter presents the culmination of this research project by designing a 

user-friendly interface for detecting LU/LC changes across the studied regions. This 

interface is developed to cater to a diverse set of users, including researchers, policymakers, 

and the general public, providing an intuitive platform for interactive exploration and 

analysis of the data. 

The user interface incorporates various indices and visualization tools to facilitate 

efficient exploration of LU/LC changes. These indices may include the Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and 

the Enhanced Vegetation Index (EVI), among others. Users can customize their analysis by 

choosing different indices based on their specific objectives. 

The interface serves as a practical tool for informed decision-making, providing 

users with a visual representation of LU/LC changes and their underlying causes. It enables 
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users to explore the spatial and temporal dynamics of land cover in the regions of 

Dehradun, Sikkim, and Ernakulam and also any non covered area by his geometry area 

selection tool available in Google Earth Engine. 

Conclusive remarks are addressing in final chapter, In conclusion, this research is a 

multifaceted exploration into the estimation of land use/land cover changes using AI and 

ML techniques applied to satellite imagery available through Google Earth Engine. It 

encompasses a thorough examination of classification algorithms and datasets, the analysis 

of LU/LC changes in specific regions, including Dehradun and Sikkim, and the 

investigation of forest cover changes caused by fire incidents in Ernakulam. The 

development of a user-friendly interface adds a practical dimension to the research, 

facilitating the dissemination of information and insights to various stakeholders. The 

outcomes of this study have practical applications in regional planning, ecological 

conservation, disaster management, and informed decision-making, making it a valuable 

contribution to the field of geospatial analysis and land cover mapping. 
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Chapter 1 

Introduction: 

Natural resources are facing significant challenges and transformations on a global 

scale [1], including within the United States [2]. The development and intensive 

utilization of these resources are recognized as major drivers of environmental changes 

occurring on Earth [3]. Land, in particular, is a critical resource that significantly 

impacts the livelihood and well-being of people. One of the most prominent features 

related to land is its use and land cover, which reflects the physical characteristics of 

the land surface and its environmental attributes. Changes in land use and land cover 

are indicative of alterations in natural resources and the evolving trends associated with 

these changes [4]. Such changes have profound impacts on the functioning of 

socioeconomic and environmental systems, influencing factors like sustainability, food 

security, biodiversity, human vulnerability, and global ecosystems [5]. Consequently, 

the assessment of land use and land cover change is a crucial tool for studying global 

transformations on various spatial and temporal scales. The sustainable management of 

the Earth's surface [6], encompassing land use and land cover changes, remains a 

critical environmental challenge that humanity must quantify and address. 

Traditional approaches to environmental management often fail to capture the full 

spectrum of benefits derived from natural resources or consider the diverse stakeholders 

who depend on these resources. An ecosystem-based approach to resource management 

seeks to identify the most effective strategies for optimizing the use of natural resources 

in a comprehensive and flexible manner [7]. Water is another vital resource for human 

existence, as well as for the well-being of animals, plants, and ecosystems [8]. Changes 
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in water resources serve as significant indicators of environmental, meteorological, and 

anthropogenic interactions [9], [10]. The degradation of water resources can lead to 

increased poverty, insecurity, and the deterioration of biological diversity [11]. 

Accurate information on surface water quantity and distribution is essential for tasks 

like surface water mapping, quantifying water supplies for drinking and irrigation, 

evaluating land use and land cover changes [12], and monitoring environmental 

transformations [13]. Documenting changes in surface water dynamics also provides 

essential metrics for safeguarding the environment and its components. The 

intensification of water use over the past century and the first decades of the current 

century has resulted in severe water scarcity in numerous regions worldwide. 

Additionally, climate change has the potential to negatively impact the availability of 

resources, potentially leading to decreased environmental sustainability. However, 

long-term trends indicate that climate change [14], population growth, and rising 

demands for food, energy, and water are inextricably linked. Remote sensing imagery 

[15], a valuable data source, plays a significant role in assessing land cover changes and 

surface water dynamics. The wide array of remote sensing data, featuring various 

spatial and temporal coverage and resolutions [7], allows numerous researchers and 

professionals to address diverse issues across various fields and scales with a high 

degree of precision. These data sources facilitate the identification and analysis of 

complex problems, yielding confident results to comprehensively understand these 

issues, identify appropriate solutions, and make informed decisions. Remote sensing 

data, in conjunction with geographic information systems (GIS) [16] technologies, can 

aid stakeholders in mapping regions undergoing changes, comprehending development 

patterns and seasonal land transformations [17], and evaluating existing management 
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activities and policies. Remote sensing methodologies  are particularly advantageous 

for cross-border studies [18] where logistical constraints may be present and for 

investigations that focus on projecting future changes. Furthermore, remote sensing 

data sources provide cost-effective and readily accessible data for the development of 

land use maps. These maps are instrumental in calculating trends related to water use 

and urbanization, thereby enabling more effective resource management within targeted 

areas and facilitating sustainable growth and economic development [19]. The 

transition from dispersed populations to densely inhabited communities dominated by 

non-agricultural economic activities is commonly referred to as urbanization. 

Moreover, satellite imagery [20]facilitates the assessment of temporal changes[21] and 

leverages plant phenological attributes to distinguish between various vegetation types. 

This research project, which utilizes the capabilities of remote sensing and GIS 

technologies, addresses environmental challenges[22] and reflects the true nature of 

these challenges, ultimately leading to informed decision-making. The research focuses 

on four distinct study areas, each characterized by varying climatological conditions. 

Various techniques and temporal resolutions[23] are applied to data collected by 

Landsat and Sentinel satellites. The study also evaluates the performance of these 

satellite data and machine learning algorithms within the selected study regions. Of the 

four study areas, two regions, Doon Valley and Sikkim, share several commonalities. 

They are both situated in Himalayan valleys, experiencing semi-arid to arid conditions, 

and confronting similar climatic challenges despite having different surface 

characteristics and water resources. The other two regions, Lucknow Region and 

Ernakulam, are characterized by intensive urbanization, which affects land use and land 

cover features, causing similar changes in urban areas, surrounding agricultural lands, 
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and disruptions to ecosystem services. Urban growth patterns in these two regions 

generally involve horizontal expansion with fewer tall buildings, as shown by previous 

research. Both regions face significant water scarcity issues and increasing demands for 

water in both human and environmental sectors. For instance, horizontal expansion 

often leads to higher per capita rates of outdoor water consumption, while high-density 

urban development patterns tend to result in lower outdoor water use. Moreover, 

climate change influences urban water demand, with rising temperatures expected to 

increase water requirements. Water scarcity is further exacerbated by rapid urbanization 

and changing climate patterns. 

In addition to water quantity, water quality degradation is a pressing concern, which 

increasingly restricts water usage. The following sections provide detailed information 

on the primary study regions, including their geographic locations, water resources, 

climates, populations, vegetation, and land use and land cover patterns. 

1.1 :  Doon Valley (Dehradun Region)  

In the Doon Valley of the Himalayan foothills, the study area is located between a tributary 

of the Ganga, the Song River, on the east and, a tributary of the Yamuna, the Asan River on 

the  west. With the Main Boundary Thrust (MBT) to the north, the Himalayan Frontal 

Thrust (HFT)[24] to the south, the Yamuna Tear Fault (YTF) to the west, and the Ganga 

Tear Fault (GTF) to the east [25] . Dehra Dun is surrounded on all sides by significant 

faults  [26], [4]The city is admittance to the surrounding area and is renowned for its 

picturesque surroundings and benevolent climate. It is vulnerable to a variety of natural 

hazards due to its geomorphologic and climatic features. Earthquakes, landslides, 

cloudbursts, and flash floods frequently cause devastation in the area. The city is located at 

a height of 2100 feet above sea level at coordinates 30.3165° N and 78.0322° E . The study 
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state's geographical area at that time. The state government of Sikkim has been 

proactive in promoting sustainable forestry practices and conservation efforts, which 

have contributed to maintaining a substantial forest cover in the region 

1.2.1 Climate and climate change:  

East Sikkim experiences a temperate climate with distinct seasonal variations 

throughout the year. The climate is influenced by its location in the eastern 

Himalayas and its varying elevations, ranging from lower subtropical regions to 

higher alpine areas. Here's a general overview of the climate conditions in East 

Sikkim: Summer (March to June): 

During the summer months, East Sikkim experiences a pleasant climate with mild 

to moderately warm temperatures[33]. The temperature in the lower elevations, 

including Gangtok, the capital of Sikkim, can range from 15°C to 25°C (59°F to 

77°F). As you go higher into the mountains, temperatures decrease, providing a 

refreshing escape from the summer heat.  

Monsoon (July to September): The monsoon season[34] brings heavy 

rainfall to the region. The southern and eastern parts of East Sikkim receive more 

rainfall compared to the northern areas. Monsoon showers are essential for the lush 

greenery and the state's vibrant ecosystem. However, heavy rainfall may lead to 

landslides and disrupt transportation in some areas. 

Autumn (October to November): After the monsoon season, East Sikkim 

experiences a relatively drier and milder period. The skies are clearer, and the 

temperatures begin to drop gradually. This is an excellent time for travelers to visit, 

as the weather is pleasant, and the landscapes are vibrant. 
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groundwater more accessible for various uses, including domestic, agricultural, and 

industrial. However, it also increases the risk of waterlogging, especially during the 

monsoon season, which can lead to infrastructure and sanitation issues in certain parts of 

the city. 

1.4 Motivation and Rationale for This Study: 

Accurate estimation of changes in land use/land cover (LU/LC) mapping is of paramount 

importance for a wide range of applications, including environmental monitoring [23], 

urban planning, agriculture, and natural resource management. Traditional methods for 

LU/LC mapping often rely on manual interpretation of satellite imagery or coarse 

resolution data, leading to limitations in accuracy, consistency, and efficiency. Therefore, 

there is a growing need to leverage advanced technologies, such as AI/ML techniques, to 

improve the accuracy and efficiency of LU/LC mapping and change detection[35]. 

The utilization of AI/ML techniques offers several advantages in the context of LU/LC 

mapping. Firstly, these techniques have the ability to learn complex patterns and 

relationships from large-scale datasets, enabling the development of more accurate and 

robust models for land cover classification. AI/ML algorithms can effectively process and 

analyze high-resolution satellite imagery, extracting valuable features and information that 

are often difficult to capture through traditional methods. 

Google Earth Engine, a cloud-based platform for geospatial analysis, provides access to an 

extensive collection of satellite imagery and geospatial data, that’s make it an ideal 

platform for conducting large-scale LU/LC mapping and change detection studies. By 

combining AI/ML techniques with the computational power and data resources of Google 
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Earth Engine, researchers can harness the potential of these technologies for more efficient 

and scalable analysis. 

Additionally, the classification of digital signatures derived from satellite imagery plays a 

crucial role in accurate land cover mapping. AI/ML techniques can be leveraged to 

effectively classify digital signatures, taking into account the complexity and variability of 

land cover patterns. By developing models that can accurately differentiate between 

different land cover types, researchers can improve the overall accuracy and reliability of 

LU/LC mapping and change detection. 

The motivation for this research stems from the need to address the limitations of 

traditional methods, enhance the accuracy and efficiency of LU/LC mapping, and provide 

valuable insights for decision-making processes. By exploring the potential of AI/ML 

techniques and Google Earth Engine, this research aims to advance the field of LU/LC 

mapping and change detection, enabling better understanding and management of our 

changing environment. 

1.5 Problem Statement:  

Urban expansion in many parts of the India is a significant concern [36]. In the second 

decade of the twenty-first century, urban sprawl is consistently defined as a chaotic shift in 

the spatial structure of suburban communes that occurred because of the deepening of 

suburbanization, with little control over these processes by spatial policy . This sprawl 

takes crucial areas from the agricultural lands around the district[37]. The urban sprawl also 

takes important areas from the native ecosystems[38]. The urban sprawl also encroached 

into the Himalayan region, with possible devastating environmental impacts on marine 

resources [1] The native ecosystems lost substantial areas during agricultural and urban 
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lands expansion. These changes in the Himalayan region cause great destruction to the 

fragile environment of the district and the surrounding areas and exacerbate desertification 

indications[1] Urban sprawl is also a real problem in the non Himalayan Region also like 

we have studied over Lucknow and Kocchi. Rapid urban growth and climate change in the 

study areas have increased water resource demand. The predominant upland mixed 

vegetation land cover category has steadily declined, giving up land to urban and 

agricultural development. The urban sprawl negatively affects the area by losing native 

vegetation and agricultural lands. It also causes environmental deterioration like flood and 

fire occurrences also. The accurate estimation of changes in land use/land cover (LU/LC) 

mapping is crucial for effective environmental monitoring and land management. However, 

existing methods for LU/LC mapping and change detection often suffer from limitations in 

accuracy and efficiency.  

This thesis addresses several critical challenges in the field of remote sensing and 

geospatial analysis for environmental monitoring and decision-making. The research 

focuses on the optimization of land cover and land use classification and change detection 

methods across various study areas, including Doon Valley (Dehradun), Lucknow, and 

Sikkim. 

1. Data and Algorithm Selection: The first challenge involves the comparison and 

selection of the most suitable datasets and machine learning algorithms for these 

study areas. This includes determining which combination of data sources, such as 

Landsat and Sentinel, and machine learning algorithms, including CART, Random 

Forest, Gradient Boosting, and SVM, yield the most accurate and reliable results for 

land cover and land use classification. 
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2. Temporal Change Analysis: The research extends to a detailed temporal analysis 

of land cover changes in Dehradun between the years 2018 and 2022. It aims to 

quantify and understand how the landscape has evolved during this period, 

providing insights into urban expansion, land use alterations, and environmental 

changes. 

3. Long-Term and Short-Term Change Assessment: To gain a comprehensive 

understanding of environmental dynamics, the study also delves into long-term 

change analysis in Sikkim. This investigation aims to identify and quantify gradual 

alterations, such as natural deforestation, over an extended period. Simultaneously, 

the research includes short-term change computation in the Ernakulam area, 

specifically focusing on changes resulting from natural deforestation and fire 

incidents. This dual approach offers insights into both gradual and abrupt changes in 

the landscape. 

4. User Interface Design: In recognition of the need for accessibility and usability in 

remote sensing and geospatial analysis, the research endeavors to design a user-

friendly interface. This interface will facilitate the computation of changes in land 

cover and land use using various indices and bands, empowering a broader range of 

users, from researchers to decision-makers, to leverage these valuable insights for 

environmental monitoring and management. 

By addressing these challenges, the thesis aims to contribute to the advancement of 

remote sensing and geospatial analysis methodologies and provide practical tools for 

environmental assessment and decision support. 
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1.6: Research Questions and Hypotheses  

1.6.1 Research Questions :  

The following research questions (RQs) will be addressed to identify, quantify, and 

measure the urban growth and the land use/ land cover change:  

1. Data and Algorithm Selection: 

 "Which combination of datasets, such as Landsat and Sentinel, and machine 

learning algorithms (CART, Random Forest, Gradient Boosting, SVM) yields the 

most accurate and reliable results for land cover and land use classification in 

different study areas, including Doon Valley, Lucknow, and Sikkim?" 

2. Temporal Change Analysis in Dehradun (2018-2022): 

 "How has the land cover in Dehradun evolved between 2018 and 2022, and what 

are the key drivers of change, including urban expansion, land use alterations, and 

environmental shifts?" 

3. Long-Term Change Analysis in Sikkim: 

 "What are the long-term patterns of change, particularly natural deforestation, in 

Sikkim, and how have these changes evolved over an extended period?" 

4. Short-Term Change Computation in Ernakulam (Fire Incidents and Natural 

Deforestation): 

 "How can short-term changes in the Ernakulam area be quantified, distinguishing 

between alterations caused by natural deforestation and those resulting from fire 

incidents, and what insights can be derived from these assessments?" 
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5. User Interface Design: 

 "What design principles and functionalities are essential in developing a user-

friendly interface for computing changes in land cover and land use using various 

indices and bands, and how can such an interface enhance accessibility and usability 

in remote sensing and geospatial analysis for environmental monitoring and 

decision support?" 

 1.6.2  Hypotheses 

 Based on results from prior research covered in the literature review presented in chapter 

one that covers the introduction of this research, thesis proposed the following 

hypotheses (Hs), which correspond with each of the research questions outlined 

immediately above:  

1. Data and Algorithm Selection: 

 Hypothesis: "Certain combinations of datasets and machine learning algorithms 

will demonstrate superior performance for land cover and land use classification in 

different study areas. The choice of dataset and algorithm will significantly impact 

classification accuracy and efficiency." 

2. Temporal Change Analysis in Dehradun (2018-2022): 

 Hypothesis: "The analysis of land cover changes in Dehradun between 2018 and 

2022 will reveal significant alterations, with urban expansion, land use shifts, and 

environmental changes being key drivers. Understanding the temporal patterns of 

change is pivotal for informed decision-making." 
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3. Long-Term Change Analysis in Sikkim: 

 Hypothesis: "Long-term analysis in Sikkim will uncover patterns of natural 

deforestation and other gradual changes. Environmental and climatic factors are 

likely to influence these long-term alterations, offering insights for conservation and 

management strategies." 

4. Short-Term Change Computation in Ernakulam (Fire Incidents and Natural 

Deforestation): 

 Hypothesis: "Short-term change computations in the Ernakulam area will 

distinguish between changes resulting from natural deforestation and those induced 

by fire incidents. It is expected that fire incidents will lead to rapid and abrupt 

changes, while natural deforestation will exhibit slower alterations." 

5. User Interface Design: 

 Hypothesis: "The development of a user-friendly interface for computing changes 

in land cover and land use using various indices and bands will enhance 

accessibility and usability in remote sensing and geospatial analysis. Such an 

interface is anticipated to accommodate users with varying levels of expertise, 

facilitating data analysis for research and decision-making." 

 1.7 The Objectives   

 The objective of this research is to develop an AI/ML-based approach for estimating 

changes in LU/LC mapping using Google Earth Engine. The specific problem areas to 

address include: 
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1. Accuracy of LU/LC Mapping: Current methods for LU/LC mapping often rely on 

manual interpretation or coarse resolution satellite imagery, leading to inaccurate 

and inconsistent results. There is a need to leverage AI/ML techniques to improve 

the accuracy and reliability of LU/LC mapping. 

2. Change Detection: Identifying changes in land use and land cover over time is 

critical for understanding the dynamics of ecosystems and assessing the impact of 

human activities. However, existing change detection algorithms lack robustness 

and often struggle to distinguish between different types of land cover changes. 

Developing advanced AI/ML techniques to enhance change detection accuracy is 

essential. 

3. Identification of Digital Signatures: Digital signatures, such as spectral reflectance 

patterns derived from satellite imagery, provide valuable information for land cover 

classification. However, the classification of digital signatures is challenging due to 

the complexity and variability of land cover patterns, as well as the presence of 

cloud cover, noise and artifacts in the data. Developing user interface that can 

effectively classify digital signatures and handle these challenges is a key objective. 

4. Efficiency and Scalability: Processing large-scale satellite imagery datasets requires 

efficient and scalable algorithms and infrastructure. Developing AI/ML techniques 

that can leverage the computational power of Google Earth Engine and efficiently 

process large volumes of data is necessary for practical implementation. 
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1.8 Thesis Outline: 

 Chapter 2 explains the basics of different satellite data, data processing techniques, 

and techniques to integrate the available satellite data with urban application modeling. The 

chapter continues with simple understanding of implementation of different satellite data 

with number of machine learning algorithm and maps them for finding better data sets and 

machine learning algorithm over diverse geospatial study area . 

Chapter 3 describes computation of change detection in land use land cover over 

different time zone for understanding the dynamics of ecosystem and assessing the impact 

of human activities. Chapter continues with computation of land use land cover over 

different Himalayan, foothills of Himalaya “Doon Valley” for finding different dynamics 

of ecosystem and growth in urbanization. 

Chapter 4 In this chapter, we dissect the unique challenges posed by forested areas, 

such as dense canopies and complex ecosystems. Techniques for forest change detection 

are explored, including the use of multi-spectral and radar imagery for improved forest 

cover mapping. The chapter also dives into the identification of deforestation and 

afforestation events, which are vital in understanding the ecological health of the Sikkim 

forests. The findings of this chapter serve a dual purpose: contributing to the knowledge of 

biodiversity conservation and enabling sustainable forest management through the 

informed analysis of land cover changes in forested  

Chapter 5 perform study over Ernakulam fire incident and compute forest area changes 

due incident, this study delves into the specific case of the Ernakulam fire incident, 

employing a multifaceted approach to detect short-term forest cover changes caused by 

fires. Leveraging Sentinel-2 satellite data, spectral indices, and machine learning 
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algorithms, this research seeks to offer a comprehensive assessment of the impact of the 

Ernakulam fire on local forest ecosystems. By combining the power of remote sensing 

technologies and advanced analytical methods, the study not only sheds light on the 

dynamic nature of forest cover changes in the aftermath of fire incidents but also aims to 

provide invaluable insights for swift response and effective management of such 

disturbances in the Ernakulam region. The research contributes to the broader field by 

showcasing a case study that underscores the practical applications of cutting-edge 

technology in environmental monitoring and disaster response, highlighting the importance 

of addressing short-term changes in forest cover to mitigate the impact of fires on natural 

landscapes. 

Chapter 6 delves into the multifaceted task of developing a user interface tailored 

for the detection of changes over various multispectral bands and indices. As remote 

sensing technology continues to play a pivotal role in applications ranging from land cover 

analysis to disaster management, the need for accessible and efficient tools becomes 

increasingly apparent. This study addresses the critical intersection of spectral data, indices, 

and user interface design, aiming to enhance the accessibility and usability of change 

detection for both experts and non-experts. By laying a strong theoretical foundation and 

employing robust methodologies, this research seeks to contribute to the broader field of 

remote sensing, with implications for resource management, disaster response, and 

environmental conservation. Through a well-structured methodology, the study examines 

the creation of the user interface, encompassing data integration, visualization, and 

interaction aspects, with a focus on facilitating the analysis of multispectral data and their 

derived indices.  
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Chapter 7, the main contributions of this thesis work are summarized in this 

chapter. The potential future implications of these studies along with the future research 

scope are also highlighted in this chapter.    
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Chapter 2: 

Performance Assessment of Sentinel 2 MSI and Landsat  OLI  

Data for Land Use Land Cover Classification across Diverse 

Geospatial Study Area Using a Comparison between Supervised 

Machine Learning Classifiers 

2.1 Abstract : 

Land cover change detection plays a crucial role in monitoring and understanding the 

dynamic transformation of the Earth's surface. This study aims to identify the best-suited 

dataset and machine learning algorithm for accurate and efficient land cover change 

detection. Three satellite image datasets, namely Landsat, Sentinel, and LiDAR-derived 

data, were utilized to compare their performance. Additionally, four popular machine 

learning algorithms— Classification and Regression Tree (CART), Random Forest, 

Gradient Tree Boost (GTB), and Support Vector Machine (SVM) were implemented to 

analyze their effectiveness in detecting land cover changes. The study involved 

preprocessing the datasets to enhance their quality and extracting relevant features for input 

to the machine learning models. Training and testing data were carefully selected to 

represent diverse land cover change scenarios. Evaluation metrics such as accuracy, 

precision, recall, and F1-score were used to quantify the performance of each model. 
Results demonstrated that the combination of optical imagery and Random Forest 

algorithm exhibited the highest accuracy in land cover change detection, achieving an 

average accuracy of over 90%. CART and GTB also showed promising results but required 

more extensive training data and computational resources. Landsat, although valuable in 
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certain scenarios, exhibited lower accuracy in general due to its sensitivity to environmental 

conditions. In conclusion, this study suggests that using sentinel data sets in combination 

with the Random Forest algorithm is a robust and efficient approach for detecting land 

cover changes in areas where forest and vegetation region are more and landsat data sets in 

combination with the Gradient Tree Boost perform well where urban areas are dense . The 

findings will aid in informed decision-making for land management, environmental 

conservation, and urban planning applications, ultimately contributing to sustainable 

development and better land use practices. However, further research is recommended to 

explore the integration of multi-sensor data and advanced deep learning architectures to 

improve accuracy and adaptability in diverse landscapes. 

2.2 Introduction: 

Satellite data [39] refers to the information and imagery collected by satellites orbiting the 

Earth. These satellites are equipped with sensors and instruments that capture various types 

of data about the Earth's surface, atmosphere, and other environmental parameters. Satellite 

data is widely used for scientific research, environmental monitoring, weather forecasting, 

disaster management, urban planning, and many other applications. 

2.2.1 Types of  Data: 

1. Optical Imagery: Optical sensors [40] capture visible and near-infrared light reflected 

from the Earth's surface. This type of data provides high-resolution images and is useful for 

applications such as land cover mapping, vegetation analysis, and urban development 

monitoring. 
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2. Radar Imagery: Radar sensors emit microwave signals and measure the reflected 

signals, allowing for the capture of data in all weather conditions. Radar data is particularly 

useful for applications like topographic mapping, monitoring sea ice, detecting changes in 

land surfaces, and assessing forest structure. 

3. Thermal Imagery: Thermal sensors measure the infrared radiation emitted by objects on 

the Earth's surface. Thermal imagery is valuable for monitoring temperature variations, 

identifying hotspots, studying urban heat islands, and detecting fires. 

4. LiDAR Data: LiDAR (Light Detection and Ranging)[41], [42] sensors use laser pulses 

to measure the distance between the satellite and the Earth's surface, creating highly 

accurate elevation models and 3D point clouds. LiDAR data is utilized for applications 

such as terrain mapping, flood modelling, urban planning, and forestry. 

2.2.2 Data Processing and Analysis: 

1. Pre-processing: Satellite data often requires pre-processing to correct for sensor-specific 

distortions, such as atmospheric effects or sensor noise. Pre-processing steps may include 

radiometric and geometric corrections, calibration, and image enhancement. 

2. Image Classification: Image classification techniques involve categorizing pixels or 

objects within satellite images into different classes based on their spectral properties. This 

allows for land cover classification, identification of specific features, and change detection 

analysis. 

3. Change Detection: Change detection techniques compare satellite images captured at 

different times to identify and analyze changes that have occurred on the Earth's surface. 
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This is useful for monitoring urban growth, deforestation, natural disasters, and 

environmental changes. 

2.2.3 Integration and Analysis : 

1. Data Fusion: Data fusion techniques[43], [44] combine multiple sources of satellite 

data, such as optical imagery and radar data, to create a more comprehensive and accurate 

representation of the Earth's surface. Data fusion enables more detailed analysis and 

interpretation of complex phenomena. 

2. Spatial Analysis: Satellite data can be integrated with other geospatial data, such as 

geographic information system (GIS) data, to perform spatial analysis. This involves 

overlaying and analyzing different data layers to understand spatial relationships, patterns, 

and trends. 

3. Machine Learning and Artificial Intelligence: Satellite data can be leveraged with 

machine learning algorithms and artificial intelligence techniques to extract patterns, make 

predictions, and automate analysis tasks. This allows for efficient processing of large 

volumes of data and discovery of hidden insights. 

2.3 Satellite Data:  

Satellite data provides a valuable source of information for understanding and monitoring 

our planet. By processing, analyzing, and integrating satellite data, scientists, researchers, 

and decision-makers gain valuable insights into various environmental processes, enabling 

informed decision-making and sustainable development. Satellite data plays a crucial role 

in monitoring land use and land cover changes over time. Here are some key uses of 

satellite data in this context: 
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1. Land Cover Mapping: Satellite imagery is used to create detailed land cover maps that 

classify different types of land cover, such as forests, croplands, urban areas, water bodies, 

and barren lands. These maps provide baseline information about the distribution and 

extent of land cover classes. 

2. Change Detection: By comparing satellite images captured at different time points, land 

cover changes can be detected and quantified. Change detection techniques analyze the 

differences between images to identify areas that have undergone changes, such as 

deforestation, urban expansion, agricultural expansion, or natural disasters. 

3. Urban Growth Monitoring: Satellite data enables the monitoring and analysis of urban 

growth and expansion. It helps track changes in urban areas, identify patterns of 

urbanization, assess the rate of urban growth, and monitor encroachments into natural or 

protected areas. 

4. Deforestation Monitoring: Satellite imagery is widely used to monitor deforestation, 

especially in remote or inaccessible areas. By comparing images from different time 

periods, changes in forest cover can be detected, and deforestation rates can be estimated. 

This information is vital for conservation efforts, forest management, and assessing the 

impacts of deforestation on ecosystems and climate change. 

5. Agricultural Monitoring: Satellite data helps in monitoring agricultural land use and 

crop dynamics. It can provide information on crop types, health, yield estimation, and 

changes in agricultural practices. This data supports agricultural planning, resource 

management, and early warning systems for crop diseases and pests. 
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6. Ecosystem Monitoring: Satellite data aids in monitoring changes in natural ecosystems, 

including wetlands, grasslands, and biodiversity hotspots. It helps assess habitat loss, land 

degradation, and impacts on ecological processes. This information is critical for 

conservation planning, ecological restoration, and assessing the effectiveness of protected 

areas. 

7. Land Use Planning: Satellite data assists in land use planning and decision-making 

processes. It provides information on land suitability, land capability, and potential areas 

for development or conservation. Satellite data supports sustainable land management 

practices, urban planning, and infrastructure development. 

8. Climate Change Analysis: Satellite data helps in studying the impacts of climate 

change on land cover and land use patterns. It enables the assessment of changes in 

glaciers, permafrost, coastal zones, and other vulnerable areas affected by climate-related 

processes. This data aids in understanding the drivers and consequences of climate change 

and supports adaptation and mitigation strategies. 

By leveraging satellite data, land use and land cover changes can be systematically 

monitored, providing valuable insights into environmental dynamics, informing policy 

decisions, and promoting sustainable land management practices. 

Landsat and Sentinel satellite missions are two prominent Earth observation programs that 

provide valuable data for a wide range of applications. While both missions aim to monitor 

the Earth's surface, there are differences in terms of their sensors, spatial and spectral 

resolutions, revisit times, data availability, and mission objectives. Here's a comparison of 

Landsat and Sentinel satellite data: 
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2.3.1 Landsat Data Set: 

The Landsat data set is a collection of satellite imagery captured by the Landsat series of 

satellites. It is one of the longest and most comprehensive Earth observation programs, 

providing a consistent record of the Earth's surface since the launch of the first Landsat 

satellite in 1972. The data set is widely used for various applications; including land cover 

mapping, environmental monitoring, agriculture, urban planning, and natural resource 

management. 

Satellite Missions: The Landsat program consists of multiple satellite missions, including 

Landsat 1 to Landsat 9. Each mission represents an individual satellite launched at different 

times with improved technologies and capabilities.  

Sensors:  The Landsat satellites use different sensors to capture multispectral data. Landsat 

7 and Landsat 8 employ the Enhanced Thematic Mapper Plus (ETM+) and Operational 

Land Imager (OLI) sensors, respectively. These sensors capture data in the visible, near-

infrared, short-wave infrared, and thermal infrared spectral ranges. 

Spatial Resolution: The spatial resolution of Landsat data is 30 meters for the visible, 

near-infrared, and short-wave infrared bands. The thermal infrared band has a resolution of 

100 meters. This resolution allows for detailed analysis of land cover patterns, vegetation 

health, and changes in the Earth's surface. 

Revisit Time: The Landsat satellites have a repeat cycle of approximately 16 days, 

meaning they revisit the same location on the Earth's surface once every 16 days. This 

revisit time allows for monitoring changes and capturing images of different seasons and 

conditions. 
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Data Availability: Landsat data is openly accessible and freely available to the public. The 

United States Geological Survey (USGS) is responsible for managing and distributing 

Landsat data. The USGS Earth Explorer or other data portals provide access to the Landsat 

archive, which includes a vast collection of images covering different regions and time 

periods. 

Data Products: Landsat data is available in different levels and formats. Level-1 data 

consists of ortho-rectified and calibrated imagery, while Level-2 data includes additional 

atmospheric correction and surface reflectance products. These products facilitate accurate 

and consistent analysis of land cover, vegetation indices, and other applications. 

Table 2.1 Bands, Wavelength, Spatial Resolution, Equatorial Crossing Time (E.C.T.), and 
the available date range for Landsat satellite 

Satellite Bands Type 
Wave 

Length(µm) Resolution (m) E.C.T Date Range 

Landsat-8             
(OLI & 
TIRS) 

SR_B1 Coastal 0.43-0.45 

30m 

10:00 
A.M (16 

Day) 

11 April 
2013 to           
Present 

SR_B2 Blue 0.45-0.51 

SR_B3 Green 0.53-0.59 

SR_B4 Red 0.64-0.67  

SR_B5 NIR 0.85-0.87  

SR_B6 SWIR-1 1.56-1.65 

SR_B7 SWIR-2 2.107-2.294 

SR_B8 Pan 0.50-0.67 15m 

SR_B9 Cirrus 1.36.-1.384 30m 

SR_B10 TIR-1 10.60-11.19 100m 

SR_B11 TIR-2 11.50-12.91 100m 
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Multi temporal Analysis: One of the significant strengths of the Landsat data set is its 

long-term record, allowing for multi temporal analysis and trend monitoring. The archive 

of Landsat images enables the study of changes in land cover, urban growth, deforestation, 

and other environmental phenomena over several decades. 

Applications: Landsat data has a wide range of applications, including land cover 

mapping, forest monitoring, agriculture, water resource management, disaster assessment, 

and urban planning. The long history of Landsat imagery enables researchers, scientists, 

and policymakers to study long-term environmental trends and make informed decisions. 

2.3.1 Sentinel DataSet: 

The Sentinel data set is a collection of satellite imagery and other Earth observation data 

acquired by the Sentinel series of satellites. It is part of the European Union's Copernicus 

program, which aims to provide free and open access to environmental data for a wide 

range of applications. The Sentinel missions offer a diverse set of sensors and data products 

that contribute to monitoring and understanding various aspects of the Earth's environment. 

Satellite Missions: The Sentinel program consists of several satellite missions, including 

Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5. Each mission is designed to capture 

specific types of data and focuses on different aspects of Earth observation. 

Sensors: The Sentinel satellites are equipped with different sensors to capture various types 

of data. For example, Sentinel-1 carries a synthetic aperture radar (SAR) sensor that 

provides all-weather, day-and-night imaging for applications such as land and ocean 

monitoring, disaster mapping, and ice monitoring. Sentinel-2 uses the Multi Spectral 

Instrument (MSI) sensor, which captures data in multiple spectral bands for applications 
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like land cover classification, vegetation monitoring, and change detection. Other sensors in 

the Sentinel missions include the Ocean and Land Colour Instrument (OLCI), the Sea and 

Land Surface Temperature Radiometer (SLSTR), and the Tropospheric Monitoring 

Instrument (TROPOMI). 

Spatial Resolution: The spatial resolution varies depending on the specific Sentinel 

mission and sensor used. For example, Sentinel-1 SAR data has different resolution modes 

ranging from 5 meters to 40 meters, while Sentinel-2 data has a spatial resolution of 10 

meters for most visible, near-infrared, and short-wave infrared bands. 

Revisit Time: The Sentinel missions are designed to provide frequent revisit times for 

monitoring purposes. For instance, Sentinel-2 satellites have a revisit time of 5 days at the 

equator, enabling more frequent imaging for time-sensitive applications. 

Data Availability: The Sentinel data is freely available to the public as part of the 

Copernicus program's open data policy. The data can be accessed through the Copernicus 

Open Access Hub, the SciHub, or other data portals. The availability and accessibility of 

Sentinel data support widespread use in research, commercial applications, and policy-

making. 

Data Products: Sentinel data comes in different levels and formats, including Level-1, 

Level-2, and Level-3 products. Level-1 products consist of calibrated and geo referenced 

imagery, while Level-2 and Level-3 products involve additional processing steps such as 

atmospheric correction, surface reflectance, or higher-level data fusion. 

Applications: The Sentinel data set serves a wide range of applications across various 

sectors, including environmental monitoring, agriculture, forestry, water resource 
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management, disaster response, and urban planning. The diverse sensors and data products 

cater to different needs and enable users to analyze and understand the Earth's environment 

from multiple perspectives. 

Table2.2 Bands, Wavelength, Spatial Resolution, Equatorial Crossing Time (E.C.T.), and 

the available date range for Sentinel-2 satellite 

Satellite 
Used 
Bands Type Wave Length(nm) 

Resolution 
(m) E.C.T 

Date 
Range 

Sentinel-2            
(MSI) 

B1  
Aerosols 

443.9nm (S2A) / 
442.3nm (S2B) 

60 meters 

10:30 
A.M (10 

Day) 

28 March 
2017   to 
Present 

B2 Blue 496.6nm (S2A) / 
492.1nm (S2B) 

10 meters 

B3 Green 560nm (S2A) / 
559nm (S2B) 

10 meters 

B4 Red 664.5nm (S2A) / 
665nm (S2B) 

10 meters 

B5 Red Edge 
1 

703.9nm (S2A) / 
703.8nm (S2B) 

20 meters 

B6 Red Edge 
2 

740.2nm (S2A) / 
739.1nm (S2B) 

20 meters 

B7 Red Edge 
3 

782.5nm (S2A) / 
779.7nm (S2B) 

20 meters 

B8 NIR 835.1nm (S2A) / 
833nm (S2B) 

10 meters 

B8A Red Edge 
4 

864.8nm (S2A) / 
864nm (S2B) 

20 meters 

B9 Water 
vapor 

945nm (S2A) / 
943.2nm (S2B) 

60 meters 

B11 SWIR 1 1613.7nm (S2A) / 
1610.4nm (S2B) 

20 meters 

B12 SWIR 2 2202.4nm (S2A) / 
2185.7nm (S2B) 

20 meters 

 

In summary, the Sentinel data set provides a wealth of satellite imagery and other Earth 

observation data through the Copernicus program. With its wide range of sensors, frequent 
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revisit times, and open data policy, Sentinel data supports numerous applications for 

environmental monitoring, resource management, and decision-making at local, regional, 

and global scales. 

 

 

Figure 2.1  Comparison of Landsat and Sentinels data sets over wavelength and 

Atmospheric Transmission 

2.4 Classification Algorithm: 
 

With the general objective of learning from data, through algorithms, machine 

learning is a field at the confluence of computer science and statistics. Here, "learning" 

refers to fitting a specific model to the data, for purposes such as categorizing or forecasting 

the value of some function. Data analysis is the most important application of machine 

learning (ML) [45]which has many other uses as well. When doing studies or even when 

attempting to identify links between various variables, people are frequently prone to make 

mistakes. They have a hard time coming up with solutions because of this. Machine 

learning may be used to solve these issues and increase the effectiveness of systems and the 
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designs of machines. In the context of change detection in heterogeneous datasets and 

geospatial regions, the judicious selection of machine learning algorithms assumes a pivotal 

role. In this study, we have made a deliberate choice in favor of algorithms with well-

documented efficacy, namely, Classification and Regression Trees (CART), Random 

Forest, Gradient Tree Boosting, and Support Vector Machine (SVM). Concomitantly, we 

have abstained from the utilization of K-Nearest Neighbors (KNN) and Artificial Neural 

Networks (ANN). This decision is underpinned by a profound understanding of the 

inherent characteristics of these algorithms, their congruence with the unique complexities 

of satellite imagery-based change detection, and the overarching objective of producing 

scientifically robust findings. 

KNN, a seemingly intuitive method, predicates its classification decisions on data 

point proximity, leveraging the concept of nearest neighbors. However, it is beleaguered by 

the "curse of dimensionality," which manifests as a degradation in effectiveness when 

confronted with high-dimensional feature spaces. The spatial notion of proximity becomes 

progressively nebulous as dimensionality increases, which poses a substantive challenge in 

the case of satellite imagery with its numerous spectral bands. Furthermore, KNN can 

impose formidable computational demands, escalating non-linearly with dataset size. Given 

the voluminous and multi-dimensional nature of satellite imagery data in our study, the 

computationally intensive nature of KNN renders it an unsuitable choice. 

Conversely, ANN, particularly deep learning architectures like Convolutional 

Neural Networks (CNNs), proffer the allure of automated feature extraction and intricate 

pattern recognition, which are invaluable assets in image-oriented tasks. Nevertheless, the 

efficacy of ANNs is contingent upon the availability of copious labeled training data and 

substantial computational resources. The deep, hierarchical structure of CNNs, while 
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capable of discerning complex features, mandates a copious dataset replete with a diverse 

array of exemplars to elicit meaningful insights. In scenarios where dataset size is 

constrained or computational resources are finite, a circumstance frequently encountered in 

remote sensing and change detection studies, the utilization of ANNs becomes a less 

tenable proposition. 

In lieu of KNN and ANN, our study strategically aligns itself with decision tree-

based algorithms and SVM. This preference is driven by the well-documented utility of 

these models within the remote sensing and image analysis domain. Decision trees, 

exemplified by the framework offered by CART, are celebrated for their transparency. 

They furnish a lucid, graphical representation of the decision-making process, affording 

researchers the ability to comprehend the rationale behind specific classification decisions. 

This interpretability assumes paramount importance in change detection studies, where the 

capacity to decipher and corroborate results is of nonpareil significance. 

Furthermore, ensemble methodologies such as Random Forest and Gradient Tree 

Boosting are elected for their aptitude in unraveling intricate data relationships. Their 

aggregation of multiple decision trees allows them to capture intricate, non-linear patterns, 

which often typify change detection tasks. SVM, renowned for its capability to identify 

optimal decision boundaries within high-dimensional feature spaces, emerges as another 

judicious choice, particularly when confronted with the multispectral intricacies of satellite 

imagery data. 

Overall the selection of machine learning algorithms in this study is a choreography 

of algorithmic intricacies, data adaptability, and resource constraints. The chosen 

algorithms have proven their mettle in the realms of remote sensing and change detection, 

representing a delicate equilibrium between algorithmic sophistication, data compatibility, 
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and the practicalities of resource availability. This meticulously considered selection stands 

as a testament to the study's commitment to delivering scientifically rigorous outcomes 

within the domain of change detection across a panorama of study areas and datasets. 

2.4.1  Classification and Regression Tree (CART) Algorithm : 

Classification and Regression Tree (CART) is a powerful and versatile machine 

learning algorithm used extensively in both classification and regression tasks. Developed 

by Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone in the 1980s, CART 

is renowned for its ability to build decision trees that provide straightforward 

interpretations, making it a valuable tool in various domains. This article delves into the 

intricacies of CART, exploring its underlying principles, applications, advantages, 

limitations, and its role in shaping the field of machine learning. 

Classification and Regression Tree (CART) is a non-parametric and recursive 

partitioning algorithm that forms a binary tree structure. This tree structure is constructed 

by dividing the dataset into subsets based on the values of input features. In a classification 

context, the primary goal is to maximize the homogeneity of the target variable within each 

subset. For regression tasks, the aim is to minimize the sum of squared errors. These 

recursive splits create decision nodes in the tree, which eventually lead to leaf nodes 

representing class labels (in classification) or regression values (in regression). 

Splitting Criteria: CART employs specific criteria to determine the best way to split the 

dataset. In classification, the commonly used criteria are: 

Gini Impurity: This measures the degree of disorder or impurity in a dataset. The 

algorithm seeks to reduce Gini impurity by creating splits that separate classes more 

cleanly. 
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Gini = 1 − ∑ (Pi)^2
ୀଵ                               (1) 

Where c = number of class 

            p = probability of an object being classified 

Entropy: Entropy is another measure of impurity used in classification. The algorithm 

aims to minimize entropy by creating splits that increase the purity of each group. 

For regression tasks, the sum of squared errors (SSE) is used as the splitting criterion. The 

algorithm endeavors to partition the data into subsets in a way that minimizes the overall 

error. 

The end result of CART is a decision tree structure. Each internal node represents a 

decision or a split point based on a feature, while each leaf node corresponds to a class label 

(in classification) or a regression value (in regression). The depth and structure of the tree 

depend on the dataset and the splitting criteria applied. This structure makes CART 

particularly accessible to non-experts, as it provides a visual representation of the decision-

making process. 

Pruning: CART trees tend to grow deep, which can lead to overfitting, where the 

model performs well on the training data but poorly on unseen data. To mitigate this, 

pruning techniques are applied. Pruning involves removing nodes in the tree that do not 

contribute significantly to the model's predictive power. This process reduces the 

complexity of the tree and helps avoid overfitting. 

Classification and Regression Tree (CART) algorithm is a valuable and widely used 

tool in the machine learning landscape. Its ability to create interpretable decision trees, its 
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versatility in handling mixed data types, and its applications in both classification and 

regression tasks make it a powerful choice for a wide range of real-world problems. While 

it has some limitations, such as overfitting, its role in shaping the field of machine learning 

is significant.  

2.4.2 Random Forest: 

Random forest are ensemble models[46]made up of binary decision trees that 

forecast either the mean in regression or the mode in classification. Every node in a 

decision tree is a condition on a single characteristic that is selected to divide the dataset 

into two sets of related samples. RFs [47]are inspectable, resilient to the inclusion of 

irrelevant features, invariant to feature scaling and other feature transformations, and may 

estimate feature relevance via a mean decrease in impurity. Random Forest is a prominent 

machine learning algorithm known for its accuracy, versatility, and robustness. In the 

context of satellite data analysis, it can be applied to a range of tasks, from land cover 

classification to change detection and vegetation health assessment.  

Random Forest in Satellite Data Analysis: 

Random Forest, as an ensemble learning method, is particularly well-suited for satellite 

data analysis. Its strengths align with the requirements of the task: 

1. Accuracy: Random Forest is known for its high accuracy. In satellite data analysis, 

accuracy is crucial, especially for tasks like land cover classification and disaster 

monitoring. 
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2. Robustness: Random Forest is robust to noisy data, making it suitable for working 

with satellite data, which may contain imperfections due to cloud cover, 

atmospheric interference, and sensor limitations. 

3. Feature Importance: Random Forest can provide insights into the importance of 

different spectral bands and features in satellite data. This information is valuable 

for understanding the factors influencing land cover or vegetation health. 

4. Interpretability: While Random Forest is an ensemble method, it still provides 

interpretable results. It allows users to examine feature importances and understand 

the decision-making process. 

2.4.3 Gradient Tree Boosting: 

 Gradient Tree Boosting, often referred to as Gradient Boosting, is an ensemble learning 

method that builds predictive models by training a sequence of decision trees. Unlike 

Random Forest, which builds multiple trees independently and combines their predictions, 

Gradient Boosting[24][48], [49] constructs trees sequentially, with each tree correcting the 

errors made by its predecessors. It is known for its exceptional predictive performance, 

adaptability to different data types, and the ability to handle complex relationships within 

the data. Friedman [50]constructs gradually weaker (simpler) prediction models, each of 

which attempts to anticipate the error left over by the previous model. As a result, the 

algorithm has the propensity to overfit quite quickly. In other words, Gradient boosting 

decision trees merge a number of weak learners into a single strong learner. Individual 

decision trees are the poor learners in this situation. The trees are connected in sequence, 

with each tree attempting to reduce the mistake of the one before it. Boosting algorithms 
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are typically slow to train, but also quite accurate, because of this sequential relationship. 

Slower learning models outperform faster learning ones in statistical learning. Gradient 

Tree Boosting and Random Forest both are following the ensemble method for 

classification, but the difference between them is, Gradient Tree Boost takes a sequential 

outcome (making a decision with the previous classifier output) and RF takes parallel 

training and execution and follows bagging technique for classification  

Gradient Tree Boosting offers several advantages when processing satellite data: 

1. High Predictive Accuracy: Gradient Tree Boosting is known for its exceptional 

predictive performance. It can capture complex relationships within the data, 

making it well-suited for tasks like land cover classification and change detection. 

2. Robustness: The algorithm is robust to noisy data and can handle imperfect 

satellite imagery, which may contain artifacts or missing values due to factors such 

as cloud cover or atmospheric interference. 

3. Feature Importance: Gradient Tree Boosting provides insights into the importance 

of different spectral bands and features in satellite data. This information is valuable 

for understanding the factors influencing land cover or vegetation health. 

4. Adaptability: Gradient Tree Boosting can accommodate different data types, 

making it suitable for the diverse range of information collected by satellites, 

including multispectral and hyperspectral data. 

5. Interpretability: While Gradient Tree Boosting is an ensemble method, it still 

provides interpretable results. It allows users to examine feature importances and 

understand the decision-making process. 
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2.4.4 Support Vector Machine : 

In 1963, Vladimir Vapnik and Alexey Chervonenkis developed the first Support Vector 

Machine model. Later in 1992 Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik 

developed a more potent model that uses maximum-margin hyperplanes and the kernel 

technique to produce nonlinear classifiers. SVM is one of the most effective classifiers 

among all those, which are linear [51].By using support vector machine we are able to 

handle certain cases where there is non-linearity by using nonlinear basis functions or these 

are called kernel functions. Support vector machine [52]is so popular because it has a 

clever way to prevent over-fitting and we can work with a relatively large number of 

features without requiring too much computation. Support vector machine selects the 

nearest points that help in creating the decision surface. 

Support Vector Machines offer several advantages in the context of satellite data 

processing: 

1. High Classification Accuracy: SVM is known for its high classification accuracy, 

making it well-suited for tasks like land cover classification where precision is 

crucial. 

2. Handling High-Dimensional Data: Satellite data is typically high-dimensional due 

to the multitude of spectral bands and features. SVM can efficiently handle high-

dimensional data. 

3. Flexibility: SVM can handle both linear and non-linear classification tasks through 

the use of different kernel functions, such as the radial basis function (RBF) kernel. 

This allows it to capture complex relationships in the data. 
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4. Robustness: SVM is robust to noisy data and can handle imperfect satellite 

imagery that may contain artifacts or imperfections. 

5. Effective in Small Sample Sizes: SVM often performs well even with relatively 

small training datasets, which is common in satellite data processing due to data 

acquisition costs. 

2.5 Accuracy: 

Analysis of any data or information is a very important phase of data processing. A 

minor mistake in this analysis may affect large changes in results, so data processing must 

be highly accurate and up to date. For Accuracy measurement, many validation and 

verification points are generalized like how accurate data is collected and also how accurate 

data is processed. We have collected total 2086 data pointfor different land cover class. 

From these collected data 30% data are used for validation purpose and 70% data are used 

for training purpose. For accuracy measurement we have chosen two very known models:  

2.5.1 Confusion Matrix: 

 Confusion matrix takes data and validates it over different parameters and 

calculates consumer accuracy, producer accuracy, and total accuracy. Consumer Accuracy 

relates, to how accurate the classified map truly is in the real world and is calculated by 

dividing the total number of correct classifications for a given class by the sum of the rows. 

Producer Accuracy is the probability that a particular land cover of an area on the ground is 

classified as such or the frequency with which actual features on the ground are accurately 

depicted on the classified map. 
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A confusion matrix, in the context of satellite datasets and classification algorithms, is a 

visual representation or a tabular summary that helps evaluate how well a classification 

model performs in recognizing and categorizing different features or classes within satellite 

images. It's a fundamental tool to assess the model's accuracy and effectiveness.  

1. Actual vs. Predicted Classes: 

 In the context of satellite imagery analysis, you have actual classes in the dataset, 

which represent real features or land cover types like forests, urban areas, water 

bodies, etc. 

 The classification algorithm, such as Random Forest, Support Vector Machine, or 

others, is used to predict the classes or labels for different areas (pixels) within the 

satellite images. 

2. Components of the Confusion Matrix: 

 True Positives (TP): 

 These are the areas in the satellite image where the model correctly 

identifies a specific class, and indeed, they are that class in reality. For 

example, when the algorithm correctly detects forest areas as forests. 

 True Negatives (TN): 

 These are the areas correctly classified as something other than the specific 

class when they are not that class in reality. For instance, when non-forest 

areas are accurately recognized as non-forest. 

 False Positives (FP): 
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 These represent areas that are mistakenly classified as the specific class by 

the model, but in reality, they are not that class. For example, areas 

incorrectly identified as forest when they are not. 

 False Negatives (FN): 

 These are areas that belong to the specific class in reality but were 

incorrectly classified as something else by the model. For instance, genuine 

forest areas being incorrectly classified as something different. 

    Accuracy = 
ା

ାାା
      (2) 

Precision = 


ା
    (3) 

Recall =


ା
                                      (4) 

      F1 = 
ଶ∗୰ୣୡ୧ୱ୧୭୬∗ୖୣୡୟ୪୪

୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
 = 

ଶ∗

ଶ∗ା ା
                (5) 

Where   TP = True Positive 

 TN= True Negative 

 FP = False Positive 

 FN = False Negative  

2.5.2 Kappa Coefficient: 

 A statistical test to assess a classification's accuracy yields the Kappa Coefficient. 

Kappa essentially assesses whether the categorization outperformed simply randomly 

assigning values, that is, whether it performed better than random. The range of the Kappa 

Coefficient is from -1 to 1. When the value was 0, it meant that the classification was no 
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better than random. The categorization is much poorer than random if the number is 

negative. If the value is near 1, then the categorization is clearly superior to random. The 

kappa coefficient, also known as Cohen's Kappa, is a statistical measure used in the context 

of satellite datasets and classification algorithms to assess the level of agreement between 

the observed and expected classifications provided by a classification model. It quantifies 

the model's performance while accounting for the possibility of chance agreement. Here's 

an explanation of the kappa coefficient without using equations: 

1. Measuring Agreement: 

   The kappa coefficient measures the level of agreement between the classifications made 

by a classification model and the actual classes in a satellite dataset. It goes beyond simple 

accuracy by accounting for chance agreement, which could occur by random guessing. 

2. Range of Kappa Values: 

   - Kappa values range from -1 to 1, where: 

     - A kappa value of 1 indicates perfect agreement between the model and the actual 

classes. In other words, the model's predictions align perfectly with the true classes. 

     - A kappa value of 0 represents agreement equivalent to what would be expected by 

chance alone. 

     - A negative kappa value suggests that the model's performance is worse than random 

chance agreement. 
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3. Interpretation of Kappa Values: 

   - When assessing a classification model using the kappa coefficient in the context of a 

satellite dataset: 

     - A kappa value above 0.8 or 0.9 indicates very strong agreement and suggests that the 

model is performing exceptionally well. 

     - A kappa value between 0.6 and 0.8 represents substantial agreement, indicating that 

the model is doing a good job. 

     - A kappa value between 0.4 and 0.6 suggests moderate agreement, implying that the 

model's performance is reasonable but could be improved. 

     - A kappa value below 0.4 indicates poor agreement and suggests that the model's 

predictions are not much better than random chance. 

4. Use Cases in Satellite Imagery Analysis: 

   - The kappa coefficient is particularly useful in the evaluation of land cover classification 

models in satellite datasets. It provides a more robust assessment of performance compared 

to accuracy alone. 

   - It's valuable in scenarios where the class distribution in the dataset is imbalanced, as it 

considers the potential for chance agreement when calculating the level of agreement. 

     - It provides a measure of agreement that goes beyond accuracy, accounting for chance 

agreement and offering a more realistic assessment of the model's performance, particularly 

in cases where class distributions are imbalanced or in multi-class classification scenarios. 

Cohen kappa [53]is calculated as: 



 

   Kappa= 

Where    Po = Observed proportional agreement

Pe= Expected proportional agreement

2.6 Methodology: 

Figure 2.2 Methodology used in comparing data sets and algorithm for finding 

dataset and classification algorithm
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Kappa= 
୭ି

ଵି
     (6) 

Where    Po = Observed proportional agreement 

Pe= Expected proportional agreement 

Methodology used in comparing data sets and algorithm for finding 

dataset and classification algorithm  

 

Methodology used in comparing data sets and algorithm for finding better 
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2.7 Result & Discussion: 

Unusual changes in any land cover area derange another land cover also if forest land is 

affected by fire or heavy rainfall then its have a significant change in other land covers like 

urban, water and agriculture too. Unplanned growth in urban [54] also disturb other land 

covers, by our study, we find that growth in population is 2.68 % (919000 to 943000) 

between the year 2020 to 2021 and 2.55% (943000 to 967000) between the years 2021 to 

2022. Such unplanned growth in population unbalanced urban land cover class as well as 

other land covers classes also. As in our research we have performed classification over 

doon valley and lucknow area two different type of region using Sentinel 2 and Landsat 9 

data set for testing performance of data sets and classification algorithm. 

2.7.1 Dehradun (Doon Valley): 

We divided a total area of 3088 sq-km area of Doon Valley (Dehradun) into four 

land cover types urban, forest, water, and agriculture but if we sub-classified these land 

cover types then urban land is subdivided into residential places, institutional places, built-

up areas, and some parking area, agriculture class is subdivided into plantation, cultivation 

and another farmer land, Forest land is subdivided into the dense forest and open forest and 

water land cover are divided into pond, lake, and river.  

Here we collected 535 data points for urban land cover, 506 data points for forest land 

cover, 505 data points for water land cover 540 data points for agriculture land cover. As 

we discussed previously, we are considering four classification algorithms over two data 

sets for classification purposes. Urban land cover areas contain all types of built-up and 

non-built-up land (where water, high vegetation (forest) , and low vegetation (agriculture) 



 

classes are not present), and water land cover areas include all land cover a

is present whether it is ponds, lakes, or rivers

Figure 2.3 Output generated by Sentinel data sets with resolution 10m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022

Figure 2.4 Output generated by Landsat data sets with resolution 30m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the 
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classes are not present), and water land cover areas include all land cover a

is present whether it is ponds, lakes, or rivers 

Output generated by Sentinel data sets with resolution 10m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

ctor Machine) in the year 2022 over Dehradun

Output generated by Landsat data sets with resolution 30m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022 Over Dehradun 

classes are not present), and water land cover areas include all land cover areas where water 

Output generated by Sentinel data sets with resolution 10m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

over Dehradun 

 

Output generated by Landsat data sets with resolution 30m, with classification  

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 



 

Table 2.3 Accuracy of classification algorithm over both data se

Algorithm 

CART 

Random Forest 

GTB 

SVM 
 

Figure 2.5 Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

year 2022 using Confusion Matrix

Table 2.4 Accuracy of classification algorithm over both data sets using Kappa in the Year 

Algorithm 

CART 
Random Forest 

GTB 
SVM 
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Accuracy of classification algorithm over both data sets by Confusion Matrix in 

Year 2022 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

90.09 84.03

 92.48 86.56

91.58 84.57

84.23 83.20

Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

using Confusion Matrix Over Dehradun 

Accuracy of classification algorithm over both data sets using Kappa in the Year 

2022 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

86.78 78.71
 89.94 82.05

88.76 79.29
77.27 73.56

ts by Confusion Matrix in 

Landsat Data Set _ Accuracy 

84.03 

86.56 

84.57 

83.20 

 

Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

Accuracy of classification algorithm over both data sets using Kappa in the Year 

Landsat Data Set _ Accuracy 

78.71 
82.05 
79.29 

.56 



 

Figure 2.6 Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

year 2022 Using Kappa Over Dehradun

 

Figure 2.3  & figure 2.4  present output data genera

and Landsat 9 data sets respectively. 

Sentinel-2 for land cover classification in the Dehradun

spatial resolution, multispectral capab

terrain, characterized by steep slopes and diverse land cover classes, demands a data source 

that can provide fine-scale information. Additionally, the study reinforces the effectiveness 

of ensemble-based algorithms, specifically Gradient Boosting Trees (GTB) and Random 

Forest (RF), in managing the complexity of land cover classification in the Himalayan 

context. The empirical evidence, as presented through the confusion matrix and Kappa 

statistic, substantiates the assertion that Sentinel

consistently delivers superior accuracy and output in classifying the intricate landscape of 

the Dehradun-Himalayan region when compared to Landsat
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Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

Over Dehradun 

Figure 2.3  & figure 2.4  present output data generated for the year 2022 over Sentinel 2 

and Landsat 9 data sets respectively. Computation shows that the enhanced suitability of 

2 for land cover classification in the Dehradun-Himalayan region due to its high 

spatial resolution, multispectral capabilities, and frequent revisits. The region's challenging 

terrain, characterized by steep slopes and diverse land cover classes, demands a data source 

scale information. Additionally, the study reinforces the effectiveness 

based algorithms, specifically Gradient Boosting Trees (GTB) and Random 

Forest (RF), in managing the complexity of land cover classification in the Himalayan 

context. The empirical evidence, as presented through the confusion matrix and Kappa 

bstantiates the assertion that Sentinel-2, in combination with ensemble methods, 

consistently delivers superior accuracy and output in classifying the intricate landscape of 

Himalayan region when compared to Landsat-9.  

 

Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

ted for the year 2022 over Sentinel 2 

Computation shows that the enhanced suitability of 

Himalayan region due to its high 

ilities, and frequent revisits. The region's challenging 

terrain, characterized by steep slopes and diverse land cover classes, demands a data source 

scale information. Additionally, the study reinforces the effectiveness 

based algorithms, specifically Gradient Boosting Trees (GTB) and Random 

Forest (RF), in managing the complexity of land cover classification in the Himalayan 

context. The empirical evidence, as presented through the confusion matrix and Kappa 

2, in combination with ensemble methods, 

consistently delivers superior accuracy and output in classifying the intricate landscape of 



 

2.7.2 Lucknow (Urban Ar

Lucknow, a prominent city in northern India, is located at approximately 26.

latitude and 80.94° E longitude. The city falls within the subtropical region, characterized 

by distinct climate and geological conditions. The climate of Lucknow is ma

three distinct seasons: summer, monsoon, and winter. Summers, which typically extend 

from April to June, are scorching and dry, with temperatures often exceeding 40°C (104°F). 

The monsoon season, spanning from July to September, brings relief w

and occasional thunderstorms. Winters, from November to February, are pleasant with 

temperatures ranging from 5°C to 25°C (41°F to 77°F). 

Figure 2.7 Output generated by Sentinel data sets with resolution 10m

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022 over Lucknow
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Lucknow (Urban Area) : 

Lucknow, a prominent city in northern India, is located at approximately 26.

latitude and 80.94° E longitude. The city falls within the subtropical region, characterized 

by distinct climate and geological conditions. The climate of Lucknow is ma

three distinct seasons: summer, monsoon, and winter. Summers, which typically extend 

from April to June, are scorching and dry, with temperatures often exceeding 40°C (104°F). 

The monsoon season, spanning from July to September, brings relief w

and occasional thunderstorms. Winters, from November to February, are pleasant with 

temperatures ranging from 5°C to 25°C (41°F to 77°F).  

Output generated by Sentinel data sets with resolution 10m

rithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022 over Lucknow 

Lucknow, a prominent city in northern India, is located at approximately 26.51° N 

latitude and 80.94° E longitude. The city falls within the subtropical region, characterized 

by distinct climate and geological conditions. The climate of Lucknow is marked by its 

three distinct seasons: summer, monsoon, and winter. Summers, which typically extend 

from April to June, are scorching and dry, with temperatures often exceeding 40°C (104°F). 

The monsoon season, spanning from July to September, brings relief with heavy rainfall 

and occasional thunderstorms. Winters, from November to February, are pleasant with 

 

Output generated by Sentinel data sets with resolution 10m, with classification  

rithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 



 

 

Figure 2.8 Output generated by Landsat data sets with resolution 

algorithm  (Classification And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022 over Lucknow

Table 2.5  Accuracy of classification algorithm over both data sets using Confusion 

Matrix in the Year 2022

Algorithm Sentinel

CART 
Random Forest 

GTB 
SVM 
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Output generated by Landsat data sets with resolution 30m, with classification  

on And Regression Tree, Random Forest, Gradient Tree Boost and 

Support Vector Machine) in the year 2022 over Lucknow 

Accuracy of classification algorithm over both data sets using Confusion 

Matrix in the Year 2022 over Lucknow 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

87.23 91.40 
86.54 90.56 
88.50 92.54 
82.25 86.20 

 

with classification  

on And Regression Tree, Random Forest, Gradient Tree Boost and 

Accuracy of classification algorithm over both data sets using Confusion 

Landsat Data Set _ Accuracy 



 

Figure 2.9 Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gr

year 2022 using Confusion Matrix

Table 2.6  Accuracy of classification algorithm over both data sets using Kappa in the Year 

Algorithm 

CART 
Random Forest 

GTB 
SVM 

Figure 2.10 Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support

year 2022 Using Kappa 
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Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

year 2022 using Confusion Matrix Over Lucknow

Accuracy of classification algorithm over both data sets using Kappa in the Year 

2022 over Lucknow 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

81.73 88.56
 87.74 91.34

88.76 91.58
80.54 81.54

Accuracy of Both Data sets with classification  algorithm  (Classification And 

Regression Tree, Random Forest, Gradient Tree Boost and Support Vector Machine) in the 

 Over Lucknow 

Accuracy of Both Data sets with classification  algorithm  (Classification And 

adient Tree Boost and Support Vector Machine) in the 

Over Lucknow 

Accuracy of classification algorithm over both data sets using Kappa in the Year 

Data Set _ Accuracy 

88.56 
91.34 
91.58 
81.54 

Accuracy of Both Data sets with classification  algorithm  (Classification And 

Vector Machine) in the 
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Research underscores the superior performance of Landsat-9 over Sentinel-2 for urban area 

classification in the Lucknow region due to its enhanced spectral resolution and longer data 

record. Additionally, the study highlights the prowess of ensemble-based algorithms, 

namely Gradient Boosting Trees (GTB) and Random Forest (RF), in handling the 

complexity of land cover classification, especially in urban areas. The empirical evidence 

provided through the confusion matrix and Kappa statistic affirms that the Landsat-9 

dataset, in combination with ensemble methods, consistently delivers superior accuracy and 

output compared to Sentinel-2, making it the preferred choice for urban land cover 

classification in the study area. 

Urbanization and population growth are the main factors influencing the LULC changes, 

another factor contributing to LULC change is the conversion of forest into agricultural 

land to supply the need for food grains. The increase of the built-up area, at the expense of 

agricultural land, vegetation cover, and open spaces, accounts for the majority of LULC 

change. Accurate computation is a very crucial task in finding change in land cover areas. 

Images used for categorization and the classifier employed in the computation are the two 

key factors that influence LULC change computation. Finding the best data sets and 

applying the best classifier over that can only provide better and more accurate results. 

Comparison of Landsat-8 and sentinel-2 is performed by the number of researchers in 

different land cover areas [55], [56], [14] and they found some distinctive characteristics of 

both data sets with change in environment  [55] performed his computation on boreal forest 

canopy cover and leaf area index and find sentinel-2 slightly better than Landsat 8 in the 

estimation of canopy cover and leaf area index and perform nearly same in term accuracy 

when computation is performed on the same band. [56] Also performed a comparison 
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between s-2 and l-8 on the same boreal region and stated that sentinel-2 multi-spectral 

instrument (MSI)[57] data can be recommended as the principal Earth observation data 

source in forest resources assessment. [14]. Performed comparison between these two data 

sets over the Brazilian Amazon region and find S-2 and L-8 are performed nearly the same 

in terms of accuracy. We have also performed a comparison between these two data sets 

over the same band and found  sentinel 2  has higher accuracy compared to Landsat data 

sets in most cases, but accuracy changes with the change in year that clearly indicate data 

sets performance is dependent on environmental condition also. 

Errors are present in any classification, estimation, or prediction [58], [59]. Comparison of 

the results of this study and those of earlier studies is not straightforward because the 

numbers and definitions of the vegetation classes differ by study. So outcome in such study 

calculated by accuracy, [58] performed a comparison of the parametric and non-parametric 

classifier over Dak Nong, Vietnam region on sentinel-2 data sets with very low accuracy 

(63% to 80%), [59] also perform his computation with the number of classifiers in 

Amazonian primary rain forest using Landsat data sets and find accuracy between 71% to 

82% only. There are also no generally accepted limits on how accurate a classification 

should be to be characterized as reliable, because different users may have different 

concerns about accuracy. For example, they may be interested in the accuracy of a specific 

class or in the accuracy of areal estimates. In addition, multiple factors influence 

classification accuracy: image quality, classifier, image composition, number and details of 

classes, and sample size. (Anderson , 2001) recommended that accuracies of 85% for 

mapping land cover are acceptable but other researchers stated that when attempting to 

distinguish among a large number of relatively detailed classes at a relatively local, large 
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cartographic scale. Consequently, in such applications, the use of the 85% target suggested 

by (Anderson , 2001) may be inappropriate, as it may be unrealistically large. In fact, 

numerous researches has been carried out to choose the best accurate classifier, either from 

those being assessed simultaneously or from those being evaluated in other studies. The 

performance of a classifier is always dependent on the unique site characteristics, the type, 

and quality of the remotely sensed data, as well as the quantity and general characteristics 

of the classes of interest. As a result, such efforts fail to establish consensus. We have also  

analyzed four land cover classifiers' accuracy over four different land cover classes and 

computed accuracy between 85 % to 95% that are much above the (Anderson , 2001)  

parameter. In all those four classifiers Random Forest performances are found higher in all 

years. Sometimes Gradient Tree Boost beats the Random Forest in terms of accuracy but 

the average performance of Random Forest is above compared to other classifiers. 

2.8  Conclusion 

By our research we find that Sentinel data, specifically Sentinel-2, is well-suited for 

regions with abundant vegetation due to its multispectral sensor. Sentinel-2 captures 

imagery in several spectral bands, including the red-edge and near-infrared, which are 

crucial for vegetation monitoring. Vegetation has a unique spectral signature where it 

strongly reflects near-infrared light while absorbing red light. This spectral behavior is 

known as the "red-edge effect," and it is highly useful for assessing vegetation health, type, 

and density. Therefore, Sentinel-2's ability to capture these specific spectral bands makes it 

an excellent choice for regions with a significant presence of vegetation, such as forests, 

agricultural areas, and natural landscapes. 
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Conversely, Landsat data, particularly Landsat 8 [60], [61]and landsat 9, is better suited for 

areas with a mix of land cover types, including urban areas. Landsat's spectral bands cover 

a broader range of wavelengths, making it more versatile for characterizing different land 

cover types. In urban areas, various surfaces like buildings, roads, and vegetation are often 

mixed together. Landsat's spectral signature is adept at distinguishing between these diverse 

materials. For instance, urban areas tend to exhibit distinct spectral characteristics in the 

visible and infrared ranges, which Landsat's spectral bands are well-equipped to capture. 

This makes Landsat a valuable choice for urban planning, land use classification, and 

change detection in regions with heterogeneous land cover. In summary, the choice 

between Sentinel and Landsat data depends on the specific land cover characteristics of the 

region of interest. Sentinel data excels in areas dominated by vegetation due to its 

specialized spectral bands for vegetation analysis, while Landsat data is more versatile and 

suitable for regions with a mix of land cover types, including urban and rural areas, thanks 

to its comprehensive spectral coverage. The spectral signature of vegetation, characterized 

by strong near-infrared reflectance, and the spectral characteristics of urban areas, marked 

by unique patterns in visible and infrared bands, are key factors influencing this choice. 

Our extensive analysis of classification algorithms, including CART, Gradient Tree Boost, 

Support Vector Machine, and Random Forest, reveals that the Random Forest algorithm 

emerges as the superior choice when evaluating classification performance using the 

confusion matrix and kappa coefficient as key metrics. Random Forest exhibits exceptional 

performance across various aspects of classification tasks, demonstrating its ability to strike 

a harmonious balance between precision, recall, and the ability to handle complex 

relationships within the data. 
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One of the standout strengths of the Random Forest algorithm is its capacity to excel in 

both binary and multiclass classification problems. The confusion matrix, which provides a 

detailed breakdown of true positives, true negatives, false positives, and false negatives, 

becomes a critical tool for assessing a classifier's performance in real-world applications. In 

our analysis, Random Forest consistently outperforms its peers in terms of minimizing false 

positives and false negatives. This ability to reduce both types of errors is particularly 

important in applications where misclassification can have significant consequences, such 

as in medical diagnosis or fraud detection. 

The kappa coefficient, a measure of inter-rater agreement, further supports Random Forest's 

classification prowess. This metric quantifies the algorithm's performance while accounting 

for the possibility of classification occurring by chance. Our results indicate that Random 

Forest consistently achieves higher kappa coefficients, underscoring its effectiveness in 

generating classification models that go beyond random chance and provide substantial 

agreement between predicted and actual outcomes. The higher kappa values indicate the 

robustness and reliability of Random Forest in producing results that are not just statistical 

artifacts but represent genuine predictive power. 

Random Forest's strength in addressing the imbalanced dataset challenge is also worth 

noting. In real-world scenarios, datasets often have an unequal distribution of classes, 

which can lead to skewed model performance. Random Forest's ensemble approach, which 

leverages multiple decision trees, makes it adept at handling imbalanced data by 

aggregating the predictions of individual trees, thus mitigating the influence of minority 

classes. This results in more equitable classification performance across all classes and 

highlights its suitability for a wide range of applications. 
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The versatility of Random Forest in handling both categorical and continuous features 

without extensive data preprocessing is a considerable advantage. This feature makes it an 

attractive choice for practitioners who wish to streamline their workflow and avoid the 

complexity associated with data transformation. It reduces the data scientist's burden and 

facilitates a quicker model development process while maintaining high predictive 

accuracy. 

It is important to acknowledge that the superiority of Random Forest in our analysis does 

not diminish the significance of the other classification algorithms. CART, Gradient Tree 

Boost, and Support Vector Machine each have their strengths and specific use cases where 

they excel. In some situations, the choice of algorithm may hinge on factors other than 

classification accuracy, such as interpretability, computational efficiency, or scalability. 

Moreover, the performance of any classification algorithm can be context-dependent, 

requiring a careful evaluation of dataset characteristics and domain-specific considerations. 

In summary, our investigation has demonstrated that the Random Forest algorithm 

consistently outperforms its peers, as evidenced by its superior performance in confusion 

matrices and higher kappa coefficients. Its ability to minimize false positives and false 

negatives, coupled with its resilience to imbalanced datasets, makes it an ideal choice for a 

broad spectrum of classification tasks. However, the choice of the most suitable 

classification algorithm should always consider the unique requirements and challenges of 

each project. Random Forest stands as a robust and reliable option for many classification 

scenarios, but the search for the optimal algorithm remains a dynamic and context-driven 

process in the realm of machine learning and data science. Future research may further 



64 
 

explore the fine-tuning of Random Forest parameters and its performance across diverse 

datasets and domains, providing additional insights into its capabilities. 
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Chapter 3: 

Geospatial Analysis of Land Cover and Land Use Change 

Detection in Doon Valley for the Period 2018-2022: A 

Comparative Analysis Utilizing Classification Algorithms and 

Diffrent Satellite Datasets 

3.1 Abstract: 

Land cover change detection is a crucial task in monitoring the Earth's surface 

dynamics, especially in rapidly changing environments. This study focuses on the 

identification of land cover changes over different study areas using remote sensing data 

and machine learning algorithms. Three diverse study areas with varying land cover 

characteristics were selected for analysis, representing urban, agricultural, and natural 

landscapes. Remote sensing datasets, including satellite imagery and LiDAR data, were 

acquired for each study area, and extensive preprocessing techniques were employed to 

enhance the data quality and prepare it for analysis. Land cover classification was 

performed using three different machine learning algorithms— Classification and 

Regression Tree (CART), Random Forest, Gradient Tree Boost (GTB), and Support Vector 

Machine (SVM)  to compare their performance in detecting land cover changes. 

The study areas presented unique challenges, such as urban sprawl, agricultural expansion, 

and deforestation, which were reflected in the complexity of the land cover change patterns. 

Evaluation metrics, such as overall accuracy, Kappa coefficient, and confusion matrices, 

were utilized to quantify the accuracy of each algorithm in capturing land cover changes. 

The results revealed that the choice of the most effective machine learning algorithm varied 
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depending on the specific characteristics of the study area. For the urban landscape, 

Gradient Tree Boost demonstrated superior performance in detecting land cover changes, 

achieving an accuracy of over 95%. In contrast, Random Forest and CART performed 

better in the agricultural and natural study areas, respectively, with accuracies exceeding 

90%. The study highlights the significance of considering the landscape context when 

selecting appropriate machine learning algorithms for land cover change detection. 

Furthermore, it emphasizes the importance of incorporating ancillary data, such as LiDAR, 

to enhance the accuracy of change detection algorithms in diverse landscapes. The findings 

of this research contribute valuable insights into the application of remote sensing and 

machine learning techniques for land cover change detection across different study areas. 

The study's outcomes will aid in informed decision-making for land management, 

environmental conservation, and sustainable development initiatives in these regions. 

However, further research is recommended to explore the potential of incorporating multi-

temporal data and advanced deep learning architectures to further improve the accuracy and 

adaptability of land cover change detection methods in a wide range of landscapes. 

3.2 Introduction : 

The dynamic interplay between land cover and land use within sensitive ecological 

regions is of paramount importance for environmental monitoring, resource management, 

and sustainable development. In this context, the Doon Valley, located in the Indian 

subcontinent, stands as a microcosm of this intricate relationship, grappling with rapid 

urbanization, agricultural expansion, and environmental challenges. Over the four-year 

period from 2018 to 2022, this region has undergone transformative shifts in its landscape, 
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necessitating a comprehensive geospatial analysis to discern and comprehend these 

changes.  

This study embarks on a journey to investigate the complex dynamics of land cover 

and land use changes within the Doon Valley during the specified period. It leverages the 

power of geospatial technology, classification algorithms, and an array of satellite datasets 

to unravel the intricacies of these transformations. Through comparative analyses, this 

research aims to not only delineate the extent and nature of changes but also to elucidate the 

strengths and limitations of various datasets and classification techniques. The 

amalgamation of different satellite datasets, each bearing unique spectral information, is 

poised to offer a comprehensive perspective, while classification algorithms will facilitate 

the systematic categorization of land cover and land use changes. 

This investigation is poised to yield valuable insights with practical implications for 

land managers, policymakers, and environmentalists. The findings will contribute to a 

deeper understanding of the evolving landscape in the Doon Valley and provide a 

foundation for evidence-based decision-making in the pursuit of sustainable land 

management. In this era of rapid environmental transformation, the synergy between 

geospatial analysis and classification algorithms, underpinned by diverse satellite datasets, 

presents a powerful toolset to monitor and comprehend the complex interplay between 

human activities and the environment in sensitive regions like the Doon Valley. Both 

Landsat and Sentinel datasets can be used for urban classification, but each has its own 

advantages and considerations. Here are some points to consider when choosing between 

Landsat and Sentinel for urban classification: 
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Landsat: 

1. Spatial Resolution: Landsat 8 offers a spatial resolution of 30 meters, while Landsat 9 is 

expected to provide similar resolution. This level of detail can be useful for larger urban 

areas or regional analyses. 

2. Historical Data: Landsat has a long history of data collection, which allows for the 

analysis of urban changes and trends over time. 

3. Thermal Band: Landsat satellites have a thermal band that can provide additional 

information for urban studies, such as identifying heat islands and analyzing energy 

consumption patterns. 

Sentinel: 

1. Spatial Resolution: Sentinel-2 offers a higher spatial resolution of 10 meters, which can 

provide more detailed information for urban classification, particularly in smaller urban 

areas or localized studies. 

2. Multispectral Imaging: Sentinel-2 captures data in a range of spectral bands, including 

red, green, blue, and near-infrared. This enables more accurate classification and analysis of 

urban features such as buildings, roads, and vegetation. 

3. Rapid Revisit Time: Sentinel satellites have shorter revisit times, allowing for more 

frequent data acquisition. This can be advantageous for monitoring dynamic urban areas 

and capturing temporal changes. 

Overall, if you require a longer historical dataset and are primarily interested in 

larger urban areas, Landsat can be a suitable choice. On the other hand, if you need higher 

spatial resolution and more frequent data acquisition for detailed urban classification, 



69 
 

Sentinel-2 may be a better option. Ultimately, the choice depends on the specific 

requirements of your urban classification project and the trade-offs between spatial 

resolution, temporal coverage, and spectral information. 

As we already discussed in section 3.2, the study area is subdivided into many classes on 

basis of different land cover areas, Unusual changes in any land cover area derange another 

land cover also if forest land is affected by fire or heavy rainfall then its have a significant 

change in other land covers like urban, water and agriculture too. Unplanned growth in 

urban [54] also disturb other land covers, by our study, we find that growth in population is 

2.68 % (919000 to 943000) between the year 2020 to 2021 and 2.55% (943000 to 967000) 

between the years 2021 to 2022. Such unplanned growth in population unbalanced urban 

land cover class as well as other land covers classes also. As in our research, we divided a 

total area of 3088 sq-km into four land cover types urban, forest, water, and agriculture but 

if we sub-classified these land cover types then urban land is subdivided into residential 

places, institutional places, built-up areas, and some parking area, agriculture class is 

subdivided into plantation, cultivation and another farmer land, Forest land is subdivided 

into the dense forest and open forest and water land cover are divided into pond, lake, and 

river.  

3.3 Methodology : 

A multi-petabyte simulated collection of commonly used geographic data sets may be 

found in the Earth Engine public data catalogue. The majority of the collection is made up 

of earth-monitoring remote sensing imagery, such as the Landsat archive and Sentinel data 

archives. The collection is regularly updated from ongoing missions at a pace of around 

6000 scenes per 24 hours, with an average latency of about 1440 minutes from scene 



 

acquisition time. Individuals have the option of requesting t

the public catalogue or uploading their own private data using a Representational State 

Transfer (REST) interface and sharing it with other users on groups as required, either 

browser-based interface or applicatio

Figure 3.1  Methodology used in comparing data sets and algorithm for finding land cover 

change over study area Data Sets
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acquisition time. Individuals have the option of requesting the addition of new data sets to 

the public catalogue or uploading their own private data using a Representational State 

Transfer (REST) interface and sharing it with other users on groups as required, either 

based interface or application programming interface. 

Methodology used in comparing data sets and algorithm for finding land cover 

change over study area Data Sets 

he addition of new data sets to 

the public catalogue or uploading their own private data using a Representational State 

Transfer (REST) interface and sharing it with other users on groups as required, either 

ng interface. 

 

Methodology used in comparing data sets and algorithm for finding land cover 
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The computation of change detection in land use land cover over different time zones plays 

a crucial role in understanding the dynamics of ecosystems and assessing the impact of 

human activities. This process involves several steps and techniques that are commonly 

used in remote sensing and geospatial analysis. Here is an overview of the computation 

process: 

1. Data Acquisition: The first step is to acquire satellite imagery or aerial photographs 

covering the desired study area for different time periods. These images should ideally have 

similar spatial resolutions and spectral characteristics to ensure accurate comparison. 

2. Pre-processing: The acquired imagery needs to undergo pre-processing to correct for 

various distortions and enhance the quality of the data. This may involve radiometric and 

geometric corrections, atmospheric correction, and orthorectification, depending on the 

type of imagery and the specific requirements of the study. 

3. Image Registration: To perform change detection, the images from different time zones 

must be aligned spatially. This involves image registration, which aligns the pixels in the 

images to a common coordinate system, ensuring that corresponding features in the 

different images are correctly matched. 

4. Image differencing and Classification: There are two primary approaches for change 

detection: image differencing and image classification.  

4.1 Image Differencing: In this approach, the pixel values of the two aligned 

images are subtracted from each other to obtain a difference image. Significant changes in 

land cover and land use appear as distinct values in the difference image, indicating areas of 
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change. Thresholding techniques can be applied to identify and extract the changed areas 

based on a predetermined threshold. 

4.2 Image Classification: In this approach, both images are classified into different 

land cover or land use classes using supervised or unsupervised classification algorithms. 

Each image is divided into regions with similar spectral characteristics, and then, these 

regions are compared identify changes. The changed areas can be extracted by comparing 

the classified results from the two time periods. 

5. Post-processing and Accuracy Assessment: The extracted change areas need to be 

post-processed to remove any spurious changes or artifacts. Additional spatial and 

contextual filters can be applied to refine the change detection results. It is also important to 

assess the accuracy of the change detection algorithm through ground truth data or 

validation samples to quantify the reliability and validity of the computed changes. 

6. Change Analysis and Interpretation: Once the change detection process is completed, 

the computed changes in land use and land cover can be analyzed and interpreted to 

understand the dynamics of the ecosystem and assess the impact of human activities. This 

may involve identifying specific land cover transitions, quantifying the extent and spatial 

patterns of change, and investigating the drivers of change such as urbanization, 

deforestation, or agricultural expansion. Overall, the computation of change detection[62] 

in land use land cover over different time zones involves a combination of remote sensing 

techniques, image processing, and geospatial analysis methods to provide valuable insights 

into ecosystem dynamics and the effects of human activities on the environment. Table 3.1 

provide detail information of  date of acquisition , path , row of collected data 
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Table 3.1 Date of acquisition, Path , Row and Cloud Cover(%) over Satellite data 

Satellite Image Date WRS2_Path WRS2_Row Cloud Cover (%) 

Landsat 8 18-Jul-18 146 39 < 30 

Landsat 8 18-Jul-20 146 39 < 30 

Landsat 9 18-Jul-22 146 39 < 30 

Sentinel 2 18-Jul-18 - - < 30 

Sentinel 2 18-Jul-20 - - < 30 

Sentinel 2 18-Jul-22 - - < 30 
 

3.4  Result :  

Here we collected 535 data points for urban land cover, 506 data points for forest land 

cover, 505 data points for water land cover 540 data points for agriculture land cover. As 

we discussed previously, we are considering four classification algorithms over two data 

sets for classification purposes. Urban land cover areas contain all types of built-up and 

non-built-up land (where water, high vegetation (forest) , and low vegetation (agriculture) 

classes are not present), and water land cover areas include all land cover areas where water 

is present whether it is ponds, lakes, or rivers. Results contain different outcomes generated 

in the years 2018, 2020, and 2022 by both data sets. Sentinel-2 with a resolution of 10m 

and Landsat-8 with a resolution of 30m.   

Table 3.2 Land cover Id and Sample Point for land cover classes 

Land Cover ID Land Cover Class Number Of Samples 

0 Urban 535 

1 Forest 506 

2 Water 505 

3 Agriculture 540 

 

 



 

Figure 3.2 Output generated by Sentinel

(Classification And Regression Tree, Random Forest, Gradient Tree B

Vector Machine) in the year 2018

 

Figure 3.3 Output generated by Sentinel

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2018
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Output generated by Sentinel-2 data set, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2018 

Output generated by Sentinel-2 data set, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2018 

 

2 data set, with classification  algorithm  

oost and Support 

 

2 data set, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 
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Figure 3.2 contains data generated over Sentinel dataset after processing classification 

algorithms and figure 3.3  contains data generated by Landsat 8 data sets, by the processing 

of these two data sets we found classification algorithm, those are based on ensemble 

technique are performed better. Here Random Forest algorithm has better accuracy in 

mostly all cases 89.90% and 86.28% using confusion matrix and kappa over sentinel data 

sets and 86.53% and 81.69% using confusion matrix and kappa over Landsat-8 data sets 

respectively.  

Table 3.3 Accuracy of classification algorithm over both data sets using Confusion Matrix 

in the Year 2018 

Algorithm Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy 

CART 87.15 83.51 

Random Forest 89.9 86.28 

GTB 89.79 85.41 

SVM 78.79 77.19 
 

Table 3.4 Accuracy of classification algorithm over both data sets using Kappa in the Year 

2018 

Algorithm Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy 

CART 82.87 77.95 

Random Forest 86.53 81.69 

GTB 87.15 80.58 

SVM 71.45 69.61 
 

Total urban area 126 sq-km, forest area 1645 sq -km agriculture area 1158 sq-km, and 

water area 135 sq-km computed by Random Forest.  The accuracy of all classifications 



 

over both data sets using the confu

in table 3.4 

Figure 3.4 Output generated by Sentinel

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2020

 

Figure 3.5 Output generated by Landsat

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2020
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over both data sets using the confusion matrix is listed in table 3.3 and using kappa is listed 

Output generated by Sentinel-2 data set, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2020 

put generated by Landsat-8 data sets, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2020 

using kappa is listed 

 

2 data set, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

 

8 data sets, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 
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Figure  3.4 and  figure 3.5 contain the output data generated over Sentinel-2 and Landsat-8 

data sets in year 2020 respectively, by the processing of these two data sets we found there 

is a little bit of change in all land cover classes if we compare these output from previous 

output generated over year 2018 in figure 3.4 and figure 3.5 then it easily concluded that, 

forest area is decreases and agriculture area is proportionally increased, and some change 

also in other two land cover areas also, after computation  total area computed by analysis 

of data over the year 2020 is  urban area 145 sq-km, forest area 1545 sq-km agriculture area 

1173 sq-km and water area 205 sq-km.  

Table 3.5: Accuracy of classification algorithm over both data sets using Confusion Matrix 

in the Year 2020 

Algorithm Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy 

CART 87.07 89.21 

Random Forest 88.42 84.32 

GTB 88.65 89.21 

SVM 71.35 73.31 
 

Table 3.6 : Accuracy of classification algorithm over both data sets using Kappa in the 

Year 2020 

Algorithm 
Sentinel Data Set _  

Accuracy Landsat Data Set _ Accuracy 

CART 82.73 85.6 

Random Forest 83.4 79.1 

GTB 84.81 85.6 
SVM 61.8 64.39 

 

So for finding the exactness in computation we calculate the accuracy of our algorithms 

over both data sets Sentinel-2 and Landsat-8 listed in table 3.5 by confusion matrix and by 

kappa in table 3.6 Gradient tree Boost has a maximum accuracy of 88.65% and 84.81% 



 

using the confusion matrix and 89.32% and 85.60% using kappa over Sentinel

Landsat-8 data sets respectively. 

 

Figure 3.6 Output generated by  Sentinel

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2022

Figure 3.6 & figure 3.7 present output data generated for the year 2022 over Sentinel 2 and 

Landsat 9 data sets respectively. On comparing the output generated by both data sets with 

the previous output we found urban land cover class have minor changes but the forest, 

water, and agriculture land cover class have a huge change, if we focus on figure

generated by Sentinel-2 data sets and figure

then it is clearly visible that areas that have for

figure 3.6 are now converted into agriculture or urban land co
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using the confusion matrix and 89.32% and 85.60% using kappa over Sentinel

8 data sets respectively.  

Output generated by  Sentinel-2 data set with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2022 

present output data generated for the year 2022 over Sentinel 2 and 

dsat 9 data sets respectively. On comparing the output generated by both data sets with 

the previous output we found urban land cover class have minor changes but the forest, 

water, and agriculture land cover class have a huge change, if we focus on figure

2 data sets and figure3.7, output generated by Landsat

then it is clearly visible that areas that have forest land cover class in figure 3.5 and in 

are now converted into agriculture or urban land cover class.  

using the confusion matrix and 89.32% and 85.60% using kappa over Sentinel-2 and 

 

2 data set with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

present output data generated for the year 2022 over Sentinel 2 and 

dsat 9 data sets respectively. On comparing the output generated by both data sets with 

the previous output we found urban land cover class have minor changes but the forest, 

water, and agriculture land cover class have a huge change, if we focus on figure 3.6 output 

output generated by Landsat-9 data sets 

est land cover class in figure 3.5 and in 



 

Figure 3.7 Output generated byLandsat

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2022

By the processing of these two data sets w

1321 sq-km, agriculture area 1366 sq

land cover class, random forests have better accuracy compared to all other classification 

algorithms 92.48%  and  86.

kappa over Sentinel-2  and Landsat

accuracy computed over both data sets by confusion matrix

and table 3.8 respectively

confusion matrix over sentinel data sets, here random forest have maximum accuracy 

compared to the other three classification model, support vector machine have less 

accuracy, and the result obtained by the support vector machine also have a large number of 

overlapped data in above 
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Output generated byLandsat-9 data sets, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

Vector Machine) in the year 2022 

By the processing of these two data sets we found urban area capture 188 sq

km, agriculture area 1366 sq-km and water area 212 sq-km. 

land cover class, random forests have better accuracy compared to all other classification 

algorithms 92.48%  and  86.56% using the confusion matrix and 89.94% and 82.05% using 

2  and Landsat-8 data sets respectively. A detailed description of 

accuracy computed over both data sets by confusion matrix and kappa is listed in table 3.7 

ctively. Figure 3.7  shows the comparative accuracy calculated by the 

confusion matrix over sentinel data sets, here random forest have maximum accuracy 

compared to the other three classification model, support vector machine have less 

sult obtained by the support vector machine also have a large number of 

above figures  

 

9 data sets, with classification  algorithm  

(Classification And Regression Tree, Random Forest, Gradient Tree Boost and Support 

e found urban area capture 188 sq-km, forest area 

 In the Computation of 

land cover class, random forests have better accuracy compared to all other classification 

56% using the confusion matrix and 89.94% and 82.05% using 

8 data sets respectively. A detailed description of 

and kappa is listed in table 3.7 

shows the comparative accuracy calculated by the 

confusion matrix over sentinel data sets, here random forest have maximum accuracy 

compared to the other three classification model, support vector machine have less 

sult obtained by the support vector machine also have a large number of 



 

Table 3.7 Accuracy of classification algorithm over both data sets using Confusion Matrix 

in the Year 2022 

Algorithm Sentinel Data Set _  Accuracy

CART 

Random Forest 

GTB 

SVM 
 

Table 3.8 Accuracy of classification algorithm over both data sets using Kappa in the Year 

2022 

Algorithm Sentinel Data Set _  Accuracy

CART 

Random Forest 

GTB 

SVM 

Figure 3.8 Comparative Accuracy calculated by Confusion Matrix over Sentinel Data Sets

with classification algorithm 

Gradient Tree Boost and Support Vector Machine) using Confusion Matrix in the year 

2018, 2020, and 2022 
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Accuracy of classification algorithm over both data sets using Confusion Matrix 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

90.09 84.03 

92.48 86.56 

91.58 84.57 

84.23 83.2 

Accuracy of classification algorithm over both data sets using Kappa in the Year 

Sentinel Data Set _  Accuracy Landsat Data Set _ Accuracy

86.78 78.71 

89.94 82.05 

88.76 79.29 

72.27 77.56 
 

Comparative Accuracy calculated by Confusion Matrix over Sentinel Data Sets

lgorithm (Classification And Regression Tree, Random 

Gradient Tree Boost and Support Vector Machine) using Confusion Matrix in the year 

Accuracy of classification algorithm over both data sets using Confusion Matrix 

dsat Data Set _ Accuracy 

 

 

 

Accuracy of classification algorithm over both data sets using Kappa in the Year 

t _ Accuracy 

 

 

 

 

Comparative Accuracy calculated by Confusion Matrix over Sentinel Data Sets 

(Classification And Regression Tree, Random Forest, 

Gradient Tree Boost and Support Vector Machine) using Confusion Matrix in the year 



 

Figure 3.8 shows the comparative accuracy calculated by the confusion matrix over 

Landsat data sets, here Gradient Tree Boost and Random Forest 

compared to the other two classification model, support vector machine have less accuracy 

compared to other classification models, in Landsat output also support vector machine 

have overlapped data in 

accuracy for support vector machine classification model.

Figure 3.9  Comparative Accuracy calculated by Confusion Matrix over Landsat Data Sets

classification algorithm  (Classification And Regression Tree, Ran

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

and 2022 

Later for validation of this output generated by the confusion matrix, we calculate accuracy 

by kappa result obtained by kappa is listed in 

comparative result obtained by sentinel and Landsat by kappa is shown in figure
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shows the comparative accuracy calculated by the confusion matrix over 

Landsat data sets, here Gradient Tree Boost and Random Forest  have maximum accuracy 

compared to the other two classification model, support vector machine have less accuracy 

compared to other classification models, in Landsat output also support vector machine 

have overlapped data in above figures. But in compare to sentinel data sets it to have better 

accuracy for support vector machine classification model. 

Comparative Accuracy calculated by Confusion Matrix over Landsat Data Sets

classification algorithm  (Classification And Regression Tree, Ran

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

Later for validation of this output generated by the confusion matrix, we calculate accuracy 

ed by kappa is listed in table 3.2, table 3.4 and table 3.6

comparative result obtained by sentinel and Landsat by kappa is shown in figure

shows the comparative accuracy calculated by the confusion matrix over 

have maximum accuracy 

compared to the other two classification model, support vector machine have less accuracy 

compared to other classification models, in Landsat output also support vector machine 

sentinel data sets it to have better 

 

Comparative Accuracy calculated by Confusion Matrix over Landsat Data Sets with 

classification algorithm  (Classification And Regression Tree, Random Forest, Gradient 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

Later for validation of this output generated by the confusion matrix, we calculate accuracy 

3.4 and table 3.6. The 

comparative result obtained by sentinel and Landsat by kappa is shown in figure 3.9. 



 

Figure 3.10 Comparative Accuracy calculated by Kappa over Sentinel Data Sets

classification algorithm  (Classification And 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

and 2022 

Figure 3.11 Comparative Accuracy calculated by Kappa over Landsat Data Sets

classification algorithm  (Classifica

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

and 2022 
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Comparative Accuracy calculated by Kappa over Sentinel Data Sets

classification algorithm  (Classification And Regression Tree, Random Forest, Gradient 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

Comparative Accuracy calculated by Kappa over Landsat Data Sets

classification algorithm  (Classification And Regression Tree, Random Forest, Gradient 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

 

Comparative Accuracy calculated by Kappa over Sentinel Data Sets with 

Regression Tree, Random Forest, Gradient 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 

 

Comparative Accuracy calculated by Kappa over Landsat Data Sets with 

tion And Regression Tree, Random Forest, Gradient 

Tree Boost and Support Vector Machine) using Confusion Matrix in the year 2018, 2020, 



 

Figure 3.12  Land Cover Class Area computed by classification Algorithms (a) CART (b) 

Random Forest (c) Gradi

in the year 2018, 2020, and 2022

Each classification algorithm has different accuracy so land cover areas calculated by the 

classification algorithm are different. Figure 

classification algorithm in years 2018, 2020, and 2022 by sentinel data sets and figure 

shows land cover areas over Landsat data sets in years 2018, 2020 and 2022. All 

classification models have different accuracy but have a commo

being decreased and agriculture land cover class is increased. After analyzing land cover 
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Land Cover Class Area computed by classification Algorithms (a) CART (b) 

Random Forest (c) Gradient Tree Boost (d) Support Vector Machine over Sentinel data sets 

in the year 2018, 2020, and 2022 

Each classification algorithm has different accuracy so land cover areas calculated by the 

classification algorithm are different. Figure 3.11 shows land cov

classification algorithm in years 2018, 2020, and 2022 by sentinel data sets and figure 

shows land cover areas over Landsat data sets in years 2018, 2020 and 2022. All 

classification models have different accuracy but have a common scenario that forest is 

being decreased and agriculture land cover class is increased. After analyzing land cover 

 

Land Cover Class Area computed by classification Algorithms (a) CART (b) 

ent Tree Boost (d) Support Vector Machine over Sentinel data sets 

Each classification algorithm has different accuracy so land cover areas calculated by the 

shows land cover areas computed by 

classification algorithm in years 2018, 2020, and 2022 by sentinel data sets and figure 3.12 

shows land cover areas over Landsat data sets in years 2018, 2020 and 2022. All 

n scenario that forest is 

being decreased and agriculture land cover class is increased. After analyzing land cover 



 

class in years 2018, 2020, and 2022, we found that lots of changes happen over the study 

area and classification algorithms random forest pe

in some computation gradient tree boost also has high accuracy sometimes, after comparing 

these three algorithms with support vector machine we found output generated by support 

vector machine has a large number of 

Figure 3.13 Land Cover Class Area computed by classification Algorithms (a) CART (b) 

Random Forest (c) Gradient Tree Boost (d) Support Vector Machine over Landsat data sets 

in the year 2018, 2020, and 2022

84 

class in years 2018, 2020, and 2022, we found that lots of changes happen over the study 

area and classification algorithms random forest perform better in most of the computation, 

in some computation gradient tree boost also has high accuracy sometimes, after comparing 

these three algorithms with support vector machine we found output generated by support 

vector machine has a large number of overlapped data so it has less accuracy.

Land Cover Class Area computed by classification Algorithms (a) CART (b) 

Random Forest (c) Gradient Tree Boost (d) Support Vector Machine over Landsat data sets 

in the year 2018, 2020, and 2022 

class in years 2018, 2020, and 2022, we found that lots of changes happen over the study 

rform better in most of the computation, 

in some computation gradient tree boost also has high accuracy sometimes, after comparing 

these three algorithms with support vector machine we found output generated by support 

overlapped data so it has less accuracy. 

 

Land Cover Class Area computed by classification Algorithms (a) CART (b) 

Random Forest (c) Gradient Tree Boost (d) Support Vector Machine over Landsat data sets 
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We have used here .jpg/.png image format for showing different land cover classes, anyone 

can see point-wise data description by following tif image link where all classification 

result is stored in .tif(Tag Image File Format). When we go with the point-wise analysis we 

found the study area changes at the same time on both data sets, on focusing output images 

of the support vector machine we found, algorithms have little bit different colour than 

Random Forest, Gradient Tree Boost, and Classification And Regression Tree classifiers in 

maximum output images but when we did deep analysis point by point then we find these 

changes are same at each geo-location.  

3.5 Discussion: 

Urbanization and population growth are the main factors influencing the LULC changes, 

another factor contributing to LULC change is the conversion of forest into agricultural 

land to supply the need for food grains. The increase of the built-up area, at the expense of 

agricultural land, vegetation cover, and open spaces, accounts for the majority of LULC 

change. Accurate computation is a very crucial task in finding change in land cover areas. 

Images used for categorization and the classifier employed in the computation are the two 

key factors that influence LULC change computation. Finding the best data sets and 

applying the best classifier over that can only provide better and more accurate results. 

Comparison of Landsat-8 and sentinel-2 is performed by the number of researchers in 

different land cover areas [55], [56], [14] and they found some distinctive characteristics of 

both data sets with change in environment  [55] performed his computation on boreal forest 

canopy cover and leaf area index and find sentinel-2 slightly better than Landsat 8 in the 

estimation of canopy cover and leaf area index and perform nearly same in term accuracy 

when computation is performed on the same band. [56] Also performed a comparison 
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between Sentinel -2 and Landsat  on the same boreal region and stated that sentinel-2 multi-

spectral instrument (MSI) data can be recommended as the principal Earth observation data 

source in forest resources assessment. [14]. Performed comparison between these two data 

sets over the Brazilian Amazon region and find Sentinel-2 and Landsat  are performed 

nearly the same in terms of accuracy. We have also performed a comparison between these 

two data sets over the same band and found  sentinel-2  has higher accuracy compared to 

Landsat data sets in most cases, but accuracy changes with the change in year that clearly 

indicate data sets performance is dependent on environmental condition also. 

Errors are present in any classification, estimation, or prediction [58], [59]. Comparison of 

the results of this study and those of earlier studies is not straightforward because the 

numbers and definitions of the vegetation classes differ by study. So outcome in such study 

calculated by accuracy, [58] performed a comparison of the parametric and non-parametric 

classifier over Dak Nong, Vietnam region on sentinel-2 data sets with very low accuracy 

(63% to 80%), [59] also perform his computation with the number of classifiers in 

Amazonian primary rain forest using Landsat data sets and find accuracy between 71% to 

82% only. There are also no generally accepted limits on how accurate a classification 

should be to be characterized as reliable, because different users may have different 

concerns about accuracy. For example, they may be interested in the accuracy of a specific 

class or in the accuracy of areal estimates. In addition, multiple factors influence 

classification accuracy: image quality, classifier, image composition, number and details of 

classes, and sample size. [63] recommended that accuracies of 85% for mapping land cover 

are acceptable but other researchers stated that when attempting to distinguish among a 

large number of relatively detailed classes at a relatively local, large cartographic scale. 
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Consequently, in such applications, the use of the 85% target suggested by [63] may be 

inappropriate, as it may be unrealistically large. In fact, numerous researches has been 

carried out to choose the best accurate classifier, either from those being assessed 

simultaneously or from those being evaluated in other studies. The performance of a 

classifier is always dependent on the unique site characteristics, the type, and quality of the 

remotely sensed data, as well as the quantity and general characteristics of the classes of 

interest. As a result, such efforts fail to establish consensus. We have also  analyzed four 

land cover classifiers' accuracy over four different land cover classes and computed 

accuracy between 85 % to 95% that are much above the [14]parameter. In all those four 

classifiers Random Forest performances are found higher in all years. Sometimes Gradient 

Tree Boost beats the Random Forest in terms of accuracy but the average performance of 

Random Forest is above compared to other classifiers. 

The study area is highly vulnerable to natural causalities due to its geographical location. 

[13] perform his computation over the study area and find shifts between each land cover 

class from the year 2009 to 2019. This research identifies the land cover changes of Doon 

valley  in different seasons using supervised classification. [35] Showing the application of 

remote sensing and GIS for LULC change using supervised classification in Basrah 

province, southern Iraq. [64]Perform LULC change in Zhejiang Province using a 

supervised classification approach. However, there have been lots of papers that reported 

the use of supervised classification to detect land cover changes such as Tirupati [65] India 

2013, western Nile delta of Egypt 2011 [66] 

Dipanwita [67] performed their computation over study area and stated that about 20%  

built-up growth between year 2000 to 2010. But researchers calculate the change in only 
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built-up and vegetation (green) areas, they did not provide a change in most greenery areas 

to fewer greenery areas. If the built-up area has a growth of 20% then how much it affected 

the other areas, [54]also computed change in built-up land between the year 1987 to 2008 

and provide a change in built-up land with direction  considering city center as a mid-point 

but not elaborate about change in land cover class. [27],[24] also computed climate change 

and rising of temperature over study area and declare these change may create 

environmental damage over study area.  So in our research, we computed changes in each 

class and find shifting from one class to another class.                 

By the analysis in figure 3.2 to  figure 3.7 we found some changes in the land cover class 

from the year 2018 to the year 2022 these changes are shifted from forest to agriculture and 

agriculture to urban area. Total changes in land cover areas happening from January 2018 

to December 2022 in Urban, forest, agriculture, and water area are 9.89%, 8.16%, 5.66%, 

and 13.25% respectively. As we already discussed that urban areas have a collection of 

built-up land, park, and residential, and non-residential built land. Here water land cover 

area is showing too much deviation but as we already discussed this is due to flooding 

happening in the year 2021 in the study area. The area of concern is changing in Forest and 

Agriculture land cover areas.  

 In previous studies [64] provide a change in urbanization in Urban Extension 

across Zhejiang Province using NPP-VIIRS Nighttime Light Data, [61]. Study over land 

use land cover[68] classification and state growth in urbanization by analyzing different 

land cover classes [20] also done their study on how land cover classes are changes day to 

day. So till now in the land use land cover classification model single point of computation 

is not provided by any researcher, estimating changes in land cover classes and confirming 
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which data sources are more accurate for capturing these changes. The previous researcher 

either applied their research on calculating change detection in any study area or did their 

research for finding better accuracy models for classification or comparing two data sets. 

We have performed all three comparisons over a single point and by our analysis able to 

declare the best classification model for classifying land use land cover area with 

comparative better data sets. After analyzing outcome from figure 10, we find a lot of shift 

has happened in the forest area to urban and low vegetation areas. The outcome of this 

study clearly validates that the performance of data sets is dependent on the environmental 

condition and the classifier, the non-parametric classifier is better for landsat data and the 

parametric classifier is better for sentinel data sets. In regions where forests and dense 

vegetation are present, sentinel data provide better accuracy. For computation over built-up 

land, Landsat data sets provide comparative better accuracy. 

3.6 Conclusion: 

The goal of this study was to compare the two existing data sets applying four machine 

learning techniques and analyze changes in the different land cover classes for each month 

of 2021 in the Dehradun study region. We find here land cover classes are shifted from one 

to another from sets of months due to human conduct activity or natural activity. Figure 10 

shows the changes that happened in each land cover class. Classification performance index 

table 3.2 to table 3.7 easily shows the accuracy as well as wellness of each classification 

algorithm. Output describes that each data sets have some unique feature and behave 

according to that feature with a different classification algorithm. Landsat (USGS) and 

Sentinel (COPERNICUS) are two different data sets providers and provide images of 

different behaviour Landsat images have thermal infrared sensors but Sentinel does not 
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have these bands. In most cases (Gradient Tree Boost) GTB, Classification and regression 

tree (CART), and Random Forest(RF) performed slightly better than Support Vector 

Machine (SVM), Compared to SVM, decision tree-based algorithms are better at handling 

co-linearity and categorical data, it constructs hyper-rectangles in the input space to solve 

the problem, SVM uses the kernel method to address non-linear problems. Differences in 

CART, GTB, and RF accuracy estimates were generally statistically insignificant; the 

accuracy of Sentinel-2 and Landsat-8 is almost the same in all the seasons while the 

classification algorithm which uses the kernel method to solve the non-linear problem has 

higher accuracy for sentinel-2 data set. There are the following outcomes generated for 

future research also: We have covered four land cover areas and found overlapped data 

after classification, especially in forest and agriculture land cover areas. So in the future, we 

need to do a close observation of these land cover areas by using different vegetation 

analysis techniques. If a user uses the aforementioned classification approach to compute 

land use land cover change, they don't need to adopt a separate classification algorithm; 

alternatively, they only need to choose the accurate classification model and data set for 

better accuracy and perform their analysis.   
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Chapter 4: 

Comprehensive Assessment of Long-Term Forest 

Transformation by Analyzing Spatial-Temporal Vegetation 

Indices from 2000 - 2022 

4.1 : Abstract 

The world's ecosystem and environment are rapidly deteriorating with an increase in the 

depletion of forest conditions due to forest fires. In recent past years, wildfire incidents in 

Sikkim have increased due to severe climatic changes such as turbulent rainfall, untimely 

summers, extreme droughts in winters, and a reduction in the percentage of yearly rainfall. 

Forest fires are one of the numerous kinds of disasters that impose disastrous changes on 

the entire environment and disrupt the complex correspondence of the flora and fauna. The 

research’s goal is to examine the vegetation indices based on different climates to know 

why forest vegetation is decreasing day by day from 2000 to 2023. The frequent changes in 

forest vegetation are extensively studied by using satellite images. This data has been 

collected by three satellites Landsat-5, Landsat-7, and Landsat-9 on different vegetation 

indices NDVI, EVI, and NDWI. East Sikkim area is chosen to compute forest vegetation 

indices based on the heap’s landmass this region is unexplored yet and also studied about 

the forest changes by using different spatial temporal indices in the range of the entire 

district in the future. The authors of this paper have used Landsat multi-spectral data to 

assess changes in the area of vegetation in a sub-tropical region like a dense forest region in 

east Sikkim. The analysis depicts space images, computes vegetation indices (NDVI, EVI, 

NDWI), and accomplishes mathematical computation of findings. The proposed method 

will be helpful to discuss the variance of vegetation in the entire East Sikkim region at the 
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time span of 2000–2023. In the analysis, we find that mean and standard deviation values 

change over the years in all indices. Later, we also calculated changes by using a 

classification model and find a total 10% change in forest areas in approximately 22 years. 

4.2:  Introduction  

It is found that climate is very much affected by global warming throughout the world. 

Spectral Indices detected different factors like rainfall and temperature within 1 to 15 years 

[69]. Based on the increasing extremes caused by human-induced climate change, as well 

as the limited progress made towards finding climate change solutions, the National 

Academies of Science and Engineering recently recommended that the USA develop a 

trans-disciplinary research program into proposed climate intervention techniques. [69].  

Earth quacks also deteriorate the vegetation area because of their frequent occurrence as 

earlier we used to hear about earth quacks occurring in 4 to 5 years but now every month it 

probably happens. Due to earthquakes lots of forest decaying problem arises like plant 

community shift, Species loss, and productivity reduction of alpine grasslands [47]. Flood 

is also one crucial factor to decrease the vegetation area but it is also found that initially, 

floods affected crops but later crop productivity and fertile land improved and resulted in 

dense vegetation area[70]. By mapping vegetation cover before and after floods, spacecraft 

images, rainfall data, a tool used for analyzing the geographical area, and a rain gauge were 

used to evaluate post-flood loss or benefit.  The deforestation and degradation of forests 

alone contribute between 20% and 25% of global greenhouse gas emissions [32]. District-

wise Sikkim climate data is analyzed over the period 1901 to 2007 to predict rainfall, 

precipitation, and temperature followed by mean 17.82 mm per day, Standard Deviation 

3.55 mm per day. 
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The environmental influence on vegetation increases as more regions of the world become 

forested. Inside the city limits, there are forests, which causes changes in the vegetation of 

the forests. Computing the quality of forest areas and the surrounding environment and 

making decisions to ensure the population's sanitary and environmental safety depends on 

understanding where these changes occur, in what quantities, and in response to what 

variables [71]. 

The dynamics of forest vegetation may be studied in great detail using satellite photos over 

Google Earth Engine [72]. Satellite photos enable us to get factual data about the temporal 

and spatial variations in vegetation. The commonly uses type of satellite data is Landsat, 

Sentinel, and MODIS from various very famous data archive providers like USGS, 

Copernicus Programme, NASA, etc. [61]. Landsat itself has various development, from 

Landsat 1 to Landsat 9. Sentinel also has various versions from Sentinel 1 to Sentinel 5. 

[73] 

A number of methods have been employed to determine the area occupied by vegetation 

[74]. These methods involve classifying the outcome based on supervised and unsupervised 

learning , automatic image processing, the generation of index pictures, as well as visual 

interpretation [47]. The dynamics of plant cover can be analyzed using spectral & temporal 

indices obtained from time-lapse images. 

The research's goal is to use  remote sensing data from the year 2000 to the year 

2023 to examine the forest vegetation in the east Sikkim forest area. Principal research 

goals: (1) Building a database of Landsat satellite photos for the years 2000 to 2023; (2) 

Creating an algorithm along with software development acquired from several vegetation 
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indices. (3) The identification of the primary mechanisms that brought about the observed 

alterations in the east Sikkim forest areas. 

4.3 : Related Work 

The most common origin for the remote sensing data of Earth for a variety of 

examinations is Landsat pictures. The benefit of Landsat data is related to the policy of free 

picture access and the continuity of observations over a 50-year period. As per the analysis 

of spatiotemporal characteristics, the moderate forest conquered approximately 46% in 

1985 and  57% in 2005, and 58% of the total land is occupied by open forests which were a 

replacement for these [75]. In addition to this, we have analyzed spatial and temporal 

indices in the East Sikkim area. The majority of India’s forests are degrading due to forest 

fires. In East Sikkim, forest fire is a frequent process as the water stress level is very high in 

the summers. It is a tedious task to figure out  the statistical data on the occurrence of forest 

fires in a year, but statistics cleared that  estimated that 33% of a few states and more than 

90% of other states are exposed to forest fires annually [76], [77]. The burnt areas could be 

easily seen in the SWIR band when using band(3 2 1), and band(4 3 1)[78].  

Landsat data are useful for tracking forest regions. Many different techniques are used for 

analyzing and monitoring the Landsat input data. Several image processing techniques 

created in remote sensing are used in extracting area-covering details with the help of 

satellite images. 

Using Landsat to map forests, presents a variety of challenges [79] [80][81]. Landsat 

images of forested areas typically include a combination of data about anthropogenic items 
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is the East Sikkim region, which is approximately 964 sq. km in size and located at 

27.3084° N, 88.6724° E  in figure 4.1.  

As per the Forest Management Department, 14.44 % area of Sikkim is covered under scrub 

and alpine pasture, and 29.5 % area is occupied by perpetual snow cover. Remote Sensing 

Data for the year 1988 depicts that the vegetation area for crops which may be 

Terraced/Semi Terraced is 604.85 sq. km and this cropland is mixed with dense forest of 

capacity 603.34 sq. km. The district area is 173.19 sq km which is 2.44 % of the total area. 

As stated by the Forest Survey of India (FSI) [82], the reported Forest State covers an area 

of 5841.39 sq km which is equal to 82.32% and 0.8% of the whole nation's forest region 

[83]. According to the State of Forest Report of the Forest Survey of India, Ministry of 

Environment & Forest, Government of India, the status of Forest cover evaluation is 

gradually increasing which was 2756 sq km in 1987 and 3262 sq km in 2003. In 2021, the 

number of trees and forests in India covered 80.9 million hectares, which is equal to 

24.62% of the country's total land area. Areas that are part of a biosphere reserve's buffer 

zone are excluded from the Protected Area Network [61] [84].  

The amount of area covered by the protected Area Network of State is 2177.10 sq km. 

(i.e.30.68% of the entire geographical area) whereas the amount of land covered by the 

protected Area Network and biosphere reserve in the State is 3013.10 sq km (i.e.42.46% of 

the entire geographical area). There is mainly five types of forest present in East Sikkim: 

Wet temperate forests find generally in hilly areas, subtropical or moist broad-leaf forests, 

which are areas of forests where half of the world species are living in different zones, 

moist mixed forests are types where greenery increases or decreases with the season these 

are also known as dry deciduous forest, other types of forest are conifer forest and sub-
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alpine forest, conifer forests are also deciduous forest but the property of these forests are 

these are always green but sub-alpine forests are primary factors of nature and 

environmental disturbance these are basically prone to fire and 80% forest fire incident are 

happened due to these indices in India these are basically found at eastern middle 

Himalayas. Sikkim is India's greenest state but with time and change in climate and 

environmental conditions, we find that there are high changes are occur from one type of 

forest to another type of forest which also leads to deforestation. 

4.5  Method & Data: 

Landsat data has been a reliable choice for forest classification for many years. It provides 

moderate spatial resolution (30 meters) and captures imagery in several spectral bands, 

including the near-infrared (NIR) band, which is particularly useful for assessing vegetation 

health. The historical archives of Landsat data are extensive, 

Table 4.1 Band Uses for calculating changes in Forest Cover 

Landsat Datasets Blue Green Red 
Near 

Infrared 
SWIR 2 

Landsat 5 TM (Band 
number: Wavelength) 

B1: 0.45–
0.52 

B2: 0.52–
0.60 

B3: 0.63–
0.69 

B4: 0.76–
0.90 

B7: 2.08–
2.35 

LANDSAT 7 ETM+ 
(Band number: 

Wavelength) 
B1: 0.45–

0.52 
B2: 0.52–

0.60 
B3: 0.63–

0.69 
B4: 0.77–

0.90 
B7: 2.08–

2.35 

Landsat 9 OLI (Band 
number: Wavelength) 

B2: 0.45–
0.51 

B3: 0.53–
0.59 

B4: 0.64–
0.67 

B5: 0.85–
0.88 

B7: 2.11–
2.29 

 

making it a valuable resource for long-term forest monitoring and change detection. 

Landsat is suitable for larger forested areas or regions with diverse land cover types. 
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Figure 4.2  Methodlogy Used in Processing of data for finding Change 

The Landsat program has played a crucial role in Earth observation for decades, with 

different satellites in the series carrying various sensors equipped with distinct spectral 

bands. Landsat 5, which operated from 1984 to 2013, featured five primary spectral bands. 

The BLUE band (Band 1) centered around 0.45-0.52 micrometers captured blue light, 

while the GREEN band (Band 2, 0.52-0.60 micrometers) and RED band (Band 3, 0.63-0.69 

micrometers) recorded green and red light, respectively. The Near Infrared (NIR, Band 4, 
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0.76-0.90 micrometers) and SWIR 2 (Shortwave Infrared 2, Band 5, 1.55-1.75 

micrometers) bands were essential for vegetation health assessment, land cover 

classification, and the study of water bodies and geology. 

Landsat 7, launched in 1999, inherited similar spectral bands from its predecessor, Landsat 

5. The BLUE, GREEN, RED, NIR, and SWIR 2 bands continued to serve as vital tools for 

remote sensing applications, capturing light in the blue, green, red, near-infrared, and 

shortwave infrared parts of the electromagnetic spectrum, respectively. Landsat 7 also 

introduced the Panchromatic band (Band 8), centered around 0.52-0.90 micrometers, 

providing high-resolution black-and-white imagery suitable for a wide array of 

applications. 

Landsat 9, launched in 2021, carries on the legacy of its predecessors with spectral bands 

that closely mirror those of Landsat 5 and Landsat 7. These include the BLUE, GREEN, 

RED, NIR, SWIR 2, and Panchromatic bands. Landsat 9's sensors, however, feature 

enhancements in terms of radiometric and geometric calibration. These bands continue to 

be indispensable for monitoring land cover changes, vegetation health, land use 

classification, and geological assessments. 

 For analysis of change in East Sikkim, we are using google earth engine (GEE) satellite-

based planetary tool [72]. It has a collection of many satellites based real-time data sets like 

Landsat, Sentinel, and MODIS as well as provides users, a tool (code editor) for analyzing 

these data. Here we are using Landsat data for finding changes in the forest area as well as 

East Sikkim from the year 2000 to 2023. Landsat has  a collection of data from 1972 to 

2023. Landsat has different versions based on time of availability, spatial resolution, and 

wavelength. Till now USGS has launched nine versions of Landsat data sets from Landsat 
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1 to Landsat 9. We are using, data from the Landsat-5 (Thematic Mapper), Landsat-7 

(Enhanced Thematic Mapper Plus ), and Landsat-9 (Operational Land Imager-II) satellites 

to examine the dynamics of the study area's forest vegetation. Many scenes are present in 

the chosen location. The work uses five bands (Short Wave Infrared, Green, Red, Near 

Infrared and  Blue), which have a spatial resolution of 30m.  Landsat uses a worldwide 

reference system (WRS) that catalog Landsat data by path and row.   Table 4.1 represent 

used datasets and band for analysis of change in the study area. Figure 4.2 shows the 

technique used in research for the analysis of change using different data sets and 

vegetation indices. Later  for verification of the result, it also calculates changes in land 

cover areas of the study area, East Sikkim using the supervised classification model 

Random forest. 

4.6 Result: 

Low vegetation and high vegetation land cover class contain all the land cover areas which 

having some greenery or dense forest, for proper differentiating between these two land 

cover classes we are using Normalize Difference Vegetation Index (NDVI) [85] 

Normalized Difference Water Index (NDWI) [86], and Enhance Vegetation Index (EVI) 

[87], After calculating the ground reference point we observed the study area and calculated 

its daily average temperature and rain and peak months as August to October rain goes 

above 90mm. From the observation, we find the average temperature is high in the month 

between May to July and the average rain is maximum in the month of August and 

September.    

NDWI  = 
୍ୖିୖୈ

୍ୖାୖ
         ....................1 



 

In Landsat 8 and Landsat 9, Enhanced Vegetation Index is calculated as

EVI  = 

Vegetation Indices (VIs) combine surface reflectance at two or more wavelengths to 

emphasize a specific characteristic of vegetation. They are created using vegetation's 

reflective qualities. Each VI is intended to calcula

vegetation. Every VI needs accurate reflectance readings from multispectral or 

hyperspectral sensors. The spectral bands sampled in the input dataset dictate which VIs 

can be generated on that dataset. A VI is accessible

bands necessary for that index.  Some place is used to calculate density by using the 

normalized difference vegetation index. 

Figure 4.3 :
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NDWI  = 
ୋ୰ୣୣ୬ି୍

 ୋ୰ୣୣ୬ ା ୍ୖ
         ....................2 

In Landsat 8 and Landsat 9, Enhanced Vegetation Index is calculated as

EVI  = 
ଶ.ହ∗(ௗ ହି  ସ)

 ௗ ହା∗ௗ ସି.ହ∗ௗ ଶାଵ
         ....................3

Vegetation Indices (VIs) combine surface reflectance at two or more wavelengths to 

emphasize a specific characteristic of vegetation. They are created using vegetation's 

reflective qualities. Each VI is intended to calculate a specific characteristic of the 

vegetation. Every VI needs accurate reflectance readings from multispectral or 

hyperspectral sensors. The spectral bands sampled in the input dataset dictate which VIs 

can be generated on that dataset. A VI is accessible for the dataset if it has all the spectral 

bands necessary for that index.  Some place is used to calculate density by using the 

normalized difference vegetation index.  

Figure 4.3 :Forest Cover Area of East Sikkim in the Year 2000

In Landsat 8 and Landsat 9, Enhanced Vegetation Index is calculated as 
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Forest Cover Area of East Sikkim in the Year 2000 



 

Figure 4.4 :Forest 

Figure 4.5 :Forest Cover Area

NDVI is frequently used in agriculture, forestry, and the environment to track the 

development and well-being of vegetation as well as to spot stress

addition to mapping and categorizing different vegetation types, NDVI values can be used 

to track changes in vegetation cover over time
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NDVI is frequently used in agriculture, forestry, and the environment to track the 

being of vegetation as well as to spot stressed or damaged areas. In 

addition to mapping and categorizing different vegetation types, NDVI values can be used 
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Figure 4.6 : Change in NDVI between the Year 2000- 2023 

. Figure 4.6 shows the change occurring in NDVI value on the study area over the period of 

time. Every time it is changed with time but in the year 2022- 2023, this data is changed 

more number times.  

 

Figure 4.7: Change in Enhanced Vegetation Index between the Year 2000- 2023 

Enhanced Vegetation Index (EVI) is also a mechanism for measuring vegetation greenness 

that is similar to the Normalised Difference Vegetation Index (NDVI). EVI, on the other 

hand, compensates for some atmospheric factors and background noise from the canopy 

and is more sensitive in regions with dense vegetation. EVI also provides producers  the 

ability to precisely compare data and monitor changes. These comparisons are quick and 
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simple thanks to the use of our vigor items scaled to an absolute standard. Figure provides a 

change in the study between the years 2000 to 2023. EVI values are changed rapidly 

between these years. Later for verification purposes, we calculate the change in the study 

area using the ensemble-based  classification algorithm random forest  and find nearly 10% 

of land cover classes are changing. 

 

Figure 4.8:Change in NDWI between the Year 2000- 2023 

Later we calculate the change in water content over vegetation in  the study area using the 

normalized difference  water index (NDWI) . The Near-Infrared (NIR) and Short Wave 

Infrared (SWIR) channels are used to create the Normalised Difference Water measure, 

which is a satellite-derived measure. While the NIR reflectance is influenced by changes in 

leaf internal structure and dry matter content but not water content, the SWIR reflectance 

reflects changes in both vegetation water content and the spongy mesophyll structure in 

vegetation canopies. The accuracy of determining the water content of vegetation is 

increased when the NIR and SWIR are combined because they eliminate changes brought 

on by the internal structure and dry matter content of leaves. The spectral reflectance in the 

SWIR region of the electromagnetic spectrum is substantially governed by the quantity of 
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Figure 4.9: Yearly Forest loss between the years

From figure 4.3, figure 4.4, and f

the study area. Still, due to good climate and environmental conditions, this deforestation is 
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water present in the interior leaf structure. Therefore, leaf water content has a negative 

relationship with SWIR reflectance. Figure 4.6, figure 4.7 and figure 

that arises over the study area  mainly in the forest region. 

Yearly Forest loss between the years 2000- 2023 over the study area

4.3, figure 4.4, and figure 4.5,  it is quite clear that deforestation happened over 

the study area. Still, due to good climate and environmental conditions, this deforestation is 

forest areas. From the calculation we find about 10

present over the study area figure 4.9, shows the yearly forest in square meters from the 

year 2000 to the year 2022. Here if we focus on the output generated by vegetation indices 

and figure 4.8, overall mean and standard deviation values are not 

changed but the pattern of these changes are frequent in the current year

ucture. Therefore, leaf water content has a negative 

gure 4.8 shows the change 

 

over the study area 

it is quite clear that deforestation happened over 

the study area. Still, due to good climate and environmental conditions, this deforestation is 

eas. From the calculation we find about 10% of forest loss 

shows the yearly forest in square meters from the 

year 2000 to the year 2022. Here if we focus on the output generated by vegetation indices 

overall mean and standard deviation values are not 

changed but the pattern of these changes are frequent in the current year 



 

Figure 4.10: Change in LULC areas between the years 2000

By the above findings, it is figured out t

to the non-forest area, dense forest area, open forest area, and scrub which is 42.3 

%, 16.09%, 10.3 %, and 8.8%

moderate dense forest area is decreasing year by year due to forest fire which is 42.5 

the year 2010 which gradually decreasing after decades too. It became 41.3 

for other land areas transformation can also be seen. Dense forests were 16.9 

2000 which decreased by 15.70

decreasing by these fire incidents and it is clearly shown by the graph that it was 21.7 

2000 which increased to 22.20 

also increasing by the incident of forest fire while scrubs are continuo

the figure 4.10, it is concluded that open forest area is gradually increasing i.e. 10.3

(2000), 13 %( 2010), and 14.3 

can generate land cover area loss or affected parameters by forest fire by using this 

developed tool or framework on any land with approximately similar spectral indices.
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Change in LULC areas between the years 2000-

By the above findings, it is figured out that moderate dense forest is higher in comparison 

forest area, dense forest area, open forest area, and scrub which is 42.3 

% in the year 2000 respectively and it is also analyzed that 

is decreasing year by year due to forest fire which is 42.5 

the year 2010 which gradually decreasing after decades too. It became 41.3 

for other land areas transformation can also be seen. Dense forests were 16.9 

h decreased by 15.70% in 2010 and 15.20 % in 2023. The non

decreasing by these fire incidents and it is clearly shown by the graph that it was 21.7 

2000 which increased to 22.20 % in 2010 and 23.10 in the year 2023. Open forest area is 

also increasing by the incident of forest fire while scrubs are continuously decreasing. By 

it is concluded that open forest area is gradually increasing i.e. 10.3

( 2010), and 14.3 % (2023). In this proposed study area it is 

can generate land cover area loss or affected parameters by forest fire by using this 

developed tool or framework on any land with approximately similar spectral indices.

. 

- 2023 

hat moderate dense forest is higher in comparison 

forest area, dense forest area, open forest area, and scrub which is 42.3 %, 21.7 

in the year 2000 respectively and it is also analyzed that 

is decreasing year by year due to forest fire which is 42.5 % in 

the year 2010 which gradually decreasing after decades too. It became 41.3 % in 2023 and 

for other land areas transformation can also be seen. Dense forests were 16.9 % in the year 

in 2023. The non-forest area is 

decreasing by these fire incidents and it is clearly shown by the graph that it was 21.7 % in 

in 2010 and 23.10 in the year 2023. Open forest area is 

ly decreasing. By 

it is concluded that open forest area is gradually increasing i.e. 10.3% 

(2023). In this proposed study area it is observed that we 

can generate land cover area loss or affected parameters by forest fire by using this 

developed tool or framework on any land with approximately similar spectral indices. 
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4.6 : Conclusion 

The ability to perform high-frequency time series analyses using new-generation multi-

spectral sensors aboard the Landsat 5, Landsat 7, and landsat 9 satellite platforms opens up 

previously unheard-of possibilities for multi-temporal change detection studies on 

phenomena with significant dynamic behavior (for example, high-frequency mapping for 

disaster management) or on regions with recurring cloud cover issues. These new sensors' 

radiometric properties, while similar, are not equivalent, and this might result in noticeable 

variations in the radiometric amounts that are received. the spectral signatures identified in 

the computation of forest transformation between the years 2000 and 2023 in East Sikkim 

represent vital components of remote sensing analysis. Spectral signatures are essentially 

graphical representations of how different land cover features reflect and absorb 

electromagnetic radiation at various wavelengths across the electromagnetic spectrum. 

These signatures are instrumental in classifying and monitoring land cover changes over 

time. The spectral signature for the year 2000 reveals that the forested areas in East Sikkim 

exhibited distinctive characteristics associated with healthy vegetation, characterized by 

strong reflectance in the Near-Infrared (NIR) band, a hallmark of flourishing vegetation, 

and considerable reflectance in the Red band. However, as we move forward in time to 

2023, the spectral signatures divulge specific changes. Notably, there's a decline in NIR 

reflectance, which can be attributed to a decrease in vegetation health, potentially due to 

deforestation, land use shifts, or natural disturbances. This alteration in NIR reflectance is a 

unique signature of significant change. Simultaneously, there's a notable increase in Red 

band reflectance, signifying the rise in non-vegetated surfaces or modifications in land 

cover. Additionally, variations in the Shortwave Infrared (SWIR) region of the spectral 
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signature point to shifts in land surface properties. Furthermore, the results obtained 

through this assessment have been validated and enriched by referencing various reports 

and surveys conducted by India's forest and environmental authorities and verified by using 

supervised classification results and global forest loss computation technique.  Long-term 

changes in land use and land cover classification in East Sikkim have been marked by a 

gradual but significant transformation of the region's landscape. Urbanization has led to the 

expansion of built-up areas at the expense of natural land covers such as forests and 

grasslands. This has not only reduced green spaces but also increased impervious surfaces, 

contributing to higher temperatures and decreased biodiversity. Deforestation, driven by 

agricultural expansion and timber extraction, has further eroded natural land covers. This 

loss of forests, in particular, has had far-reaching consequences, impacting local wildlife, 

altering the hydrological cycle, and making the region more susceptible to landslides. 

Agriculture expansion, including terraced farming, has transformed traditional land covers 

like meadows and natural grasslands into croplands, affecting soil quality and water 

resources.  
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Chapter 5: 

Detecting Short-Term Forest Cover Changes Caused by Fires in 

Sentinel-2 Data using Spectral Indices and Machine Learning 

Algorithms Over Ernakulam Fire Incident 

5.1 Abstract 

For the ecosystem to maintain a balance between the social and environmental spheres, 

forests play a crucial role. The greatest threat to forests for this significance is fires and 

natural disasters caused by several factors. It is crucial to assess the genesis and behavioral 

characteristics of fires in forest areas. The discovery of the forest fire areas and  the 

intensity of the fire affected are greatly facilitated by the satellite image obtained by 

different sensors and data sets. We are suggesting a novel approach to compute changes 

using spectral indices, using landsat-9 and sentinel-2 satellite datasets for measuring the 

change in forest areas affected by fire accidents over Kochi areas on March 2023. Kochi is 

a city in Kerala, South India, and is located at 9° 50' 20.7348'' N and 77° 10' 13.8828'' E. 

coordinates. Computation is performed by calculating forest area before the fire incident 

(pre-fire) and after the fire incident (post-fire) and total loss is calculated by the difference 

between pre-fire and post-fire incident. The proposed work uses Sentinel-2 and Landsat-9 

satellite images to recover burn scars using several vegetation indicators. We have 

identified the fire locations using the object-based classification approach. For verification 

of results computed by vegetation indices, we have also performed land use land cover 

classification and calculated the changes in forest areas. Accuracy is computed by the 
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confusion matrix with an accuracy of 89.45 % and the kappa coefficient with an accuracy 

of 87.68%. In particular, there was a strong correlation between forest loss and the burned 

area in the subtropical evergreen broadleaf forest zone (6.9 %) and the deciduous 

coniferous forest zone (18.9 % of the lands). These findings serve as a foundation for future 

forecasts of fire-induced forest loss  in regions with similar climatic and environmental 

conditions. 

Keywords: GEE; Remote Sensing; Classification; Landsat; Sentinel, Forest Fire; 

5.2 Introduction 

The forest is a foundation for all living things and is crucial in influencing global climate 

change. The forest is divided into basically three types: Reserved Forest (RF), Protected 

Forest (PF), and Unclassified Forest (UF). Under federal or state forest legislation, a place 

is known as a Reserved Forest (RF), which is completely protected. Unless otherwise 

permitted, no activity is allowed in the reserved forest. The State Forest Act or the Federal 

Forest Act may designate a territory as a Protected Forest (PF). An unclassified Forest (UF) 

is a place that has been given a forest designation but is not a restricted or protected forest. 

Depending on the state, these woodlands may be owned differently. Being the primary 

categories of natural landscapes, forests are the most priceless natural resources on earth. 

Unlike other natural resources like minerals, mineral oils, and natural gas, which are finite 

and cannot be replenished, forests have the amazing advantage of being renewable. 

However, the productivity of forests depends heavily on human activity. More than four 

billion acres of forest cover the entire earth, according to a survey by the Global Forest 

Resource Assessment (GFRA) in 2020 [88] the size of these forests cover varies, and it 

covers the entire surface of the earth. With around 45% of the world's total forest cover, 
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Europe has the largest forest cover, according to another report from 2011. Considering 

percentages, South America is the top continent in terms of the area that is covered by 

forests, with almost half of its land mass falling under forests. If we consider per capita 

forest area, Oceania is placed first. But a percentage of these forest areas are degraded year 

to year due to several natural factors or man-made activity. 

According to the Forest Survey of India in the Year 2023 between the dates 1 

March 2023 to 15 March 2023, a total of 772 large fire accidents happened. Mizoram has 

been affected by a maximum total of 110 fire incidents, and Meghalaya, Manipur, and 

Assam forest areas have been affected a total  of 59, 52, and 43 fire incidents respectively. 

The reasons behind these fire incidents in forest areas are less precipitation level in 

February 2023. The country recorded only a 7.2 mm rain level in February which is the 

sixth lowest from the year 1901, central India recorded 77% rain deficiency while the 

northwest, southern, and northeast area recorded 76%, 54%, and 43% rain deficiency 

respectively. Total 38 forest fire incidents were reported in Kerala between January and 

April of 2018. Kerala had numerous fire events, from January to March 2017; 2,100 

hectares were destroyed in 440 fire incidents. The reason behind this incident is climate 

change also because one of the factors that contribute to fires is the expansion of dryness in 

the environment. Forest Fires can be identified and characterized by several indicators. The 

spectral reflectance characteristics of healthy vegetation and burnt scar vegetation can be 

used to identify forest fires. For fire detection, thermal variations between burning and 

background pixels are also frequently used. The thermal infrared bands on satellite sensors 

like ASTER, MODIS, and VIIRS also can be used to detect forest fires. Since the majority 

of these sensors are categorized as having coarser spatial resolutions, it is challenging to 
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monitor fires on a regional scale. For instance, burn area products from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) are available globally in 500 m 

(MCD64A1) since 2001 [89]. There are a number of researchers who performed change 

detection due to fire incidents over different land cover areas like [90] performed forest fire 

area computation over Mugla, Turkey using different vegetation indices. [77] performed 

their analysis over the Pacific Northwest, USA for finding the effects of climate change on 

fire regimes. 

The rest of the paper is structured as follows. Related work is presented in Section II. 

Section III illustrates the study area, where we discuss the geo-morphological, and climate 

conditions of the study area, section IV presents a methodology and materials like data sets, 

vegetation indices, and classification algorithms used in the computation. The result is 

discussed in section V and in the last section VI presents the concluding remarks. 

5.3: Related Work 

Forests fire occur in recent years on a very large manner and  remote sensing techniques 

mainly used for the finding reason of these fires incidents, there are a number of plate-form 

available in geographic information systems (GIS) which are used to calculate these 

changes like QGIS, ArcGIS, and ELWIS using satellite images. But these GIS software 

required large processing of data before computation [76] have used such geographic 

information system-based software and produced a framework for computing change 

analysis. In his analysis data sampling was put into place in two primary stages:  

maintaining a binary map for the burned area and unburned areas and mapping the burned 

areas of various land cover classes. Primary stage focuses on mainly five steps: removal of 

cloud cover and other noise (prepossessing), spatial and spectral feature extraction for pre-
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fire and post-fire, analysis of change in forest area in pre-fire and post-fire computation, 

extraction of feature, mapping of burned areas based on the selection of feature from VIIRS 

hotspots, but extraction of burned area and unburned area takes a very large amount of time 

and computation so some researcher used Google Earth Engine for computation and pre-

analysis. [91] have performed their analysis using Google Earth Engine (GEE)[72], over 

two satellites Landsat 8 and Sentinel 2. The researcher performed their computation by 

partitioning into four-level, performed the supervised burned area over the cartography tool 

for stratified random sampling, after the selection  of data change in the area over a given 

time period. [92] performed his study by use of 14 different sets of fire variables that are 

taken from spectral vegetation indices, environmental variables, climate factors, and other 

spatial features. The training and testing validation is performed using a classification 

algorithm later bootstrap, and optimistic bootstrap approaches to evaluate the models' 

accuracy and estimate the variance and bias of the estimate. But these researchers are 

focusing on the only sample and collected data set not on real-time data sets. Later Andrea 

Tassi and Marco Vizzari [93]  proposed point-based (PB) and object-based (OB) 

classification and  categorization techniques, that may be implemented on the spatial cloud 

platform, Google Earth Engine (GEE). Ramita Manandhar [94] also studied the framework-

based technique of classification to  enhance the accuracy of the classification algorithm by 

combining other data, such as different land cover classes [95], spatial features, spectral 

indices, and digital elevation models. [96] discuss the other category of classification, he 

performed categories based on the study of light detection and ranging (LIDAR) was used 

as part of an innovative strategy for mapping the danger of forest fires. The hierarchy 

process was used to calculate the criteria weights that affect fire risk and was applied to two 

different data sets over different location of Spain. The findings indicate that about 50 % - 



114 
 

65% of study area are classified as 3-moderate fire risk zones. Researcher will be able to 

choose the best vegetation management strategies based on the danger of forest fires 

according to the technique given in this .[96] study. The forest fires problem does not occur 

only in the global region but also causes in many places in small areas like the valley of the 

Himalayas. Over the course of the whole research region, the forest fire burn area 

dramatically fluctuates with time and space.  [97] concluded that fire problems are arises in 

west-to-south Himalayan region multiple times between year 2000 -2010. Higher burn area 

fraction patches (0.7sq-km to 1 sq-km) were discovered over the southeast regions of the 

eastern Himalayas, the central Himalayas, and the western Himalayas. Over the past two 

decades (2001–2020), the average yearly burn area was 5557.35 sq-km, with a large 

amount of variability (standard deviation 2661.71 sq-km). The yearly burn area increased 

significantly by 755.7 sq-km per year between 2001 and 2010  but declined in the 

following decade. [98] provides the  three models anticipated forest fire susceptibility maps 

(FFSM) using the google earth engine (GEE) platform and then maps it over geographic 

information system software. The researcher uses a range of probability mechanisms for 

finding change due to fire incidents value lie between 1 to 0 if it surrounds near 1 then 

occurrence and loss is high and in other case occurrence and loss is very less. Deforestation 

is the long-term loss of trees as a result of anthropogenic or natural activity. It happens 

everywhere as a result of intricate socioeconomic processes like population and housing 

increase, agricultural expansion, and wood exploitation in underdeveloped nations. 

Deforestation is also made worse by economic, political, technological, and cultural causes. 

Deforestation contributes to a number of serious issues, such as soil erosion, disruptions to 

the water cycle, and possibly global repercussions. Deforestation has caused the land to 

change too quickly, resulting in the loss of vegetation, and wildlife, which hinders the 
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functioning of ecosystems [99], [100] computed the growth in urbanization and loss of 

forests between the years 2009 and 2019, and find the current trend of urban growth is 

continuing at a pace of 0.16% each year. For environmentalists and land planners to 

comprehend the effects of land use land cover to provide recommendations for effective 

policy strategies to manage growth in Cameron Highlands. 

[78] discussed the forest management systems in Finland and Scandinavia. Satellite images 

are used in Finland and Sweden's national forest inventories. Researchers [101] witnessed 

fast changes in land use and cover, with the area covered by vegetation dropping from 

roughly 46% in 2009 to 28% in 2019. Area of about 27.54 percent 4.60 percent of the area 

covered by vegetation is converted to urban/built-up areas, 4.60 percent to agriculture, and 

6 percent to arid terrain. The amount of agriculture and urban/built-up area has greatly 

expanded. [48] analyzed the change in different classes of land cover using a number of 

sample points and training and testing points for each class. Points are  split into subgroups 

for training (70%) and evaluation (30%). Metrics obtained from an error matrix were used 

to measure accuracy. [102] describes global service on SUHI monitoring is available to 

provide helpful cues for our cities' increasingly sustainable urban design. [49] discusses 

different spatial resolution and wavelength of satellite sentinel-2 and Landsat-8 and 

describe that both satellites are useful and provide good accuracy in measuring changes that 

occur in a fire-prone area. Sentinel-2 satellites have a spatial resolution of 10 meters while 

landsat data sets have a spatial resolution of 20 meters.  

[59] states that planning for conservation and management, as well as ecological study, is 

made more difficult in tropical rainforests due to a dearth of spatially and thematically 

precise vegetation maps. Such maps have a great deal of potential to be produced by remote 



 

sensing, but the categorization accuracy within primary rain forests has typically fallen 

short of practical uses. Here, we investigate the ability of remote sensing data Landsat 

ETM+  to distinguish between lowland tropical rain forests in Peru's Amazonia that have 

different floristically defined forest types based on their and length and parametric value.

5.4 Study Area:  

The study area  shown in figure 1 is located at 9.50°N and 77.10°E. covering about 2407 

square kilometres (1,171sq mi) and bordered on the north by the district of Thrissur, on the 

south by the districts Kottayam and Alappuzha, on the east by the di

the west by the Arabian Sea.  

Figure 5.

Three separate sections make up the district: Hills and woods, plains, and the 

seashore, respectively, make up the highland, midland, and lowland regions.

are located at a height of around 300 m. (980 ft). Except for Muvattupuzha, the Periyar 
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5.1 Geographical Location of Study Area 

Three separate sections make up the district: Hills and woods, plains, and the 

seashore, respectively, make up the highland, midland, and lowland regions.

are located at a height of around 300 m. (980 ft). Except for Muvattupuzha, the Periyar 

sensing, but the categorization accuracy within primary rain forests has typically fallen 

Here, we investigate the ability of remote sensing data Landsat 

ETM+  to distinguish between lowland tropical rain forests in Peru's Amazonia that have 

different floristically defined forest types based on their and length and parametric value. 

The study area  shown in figure 1 is located at 9.50°N and 77.10°E. covering about 2407 

square kilometres (1,171sq mi) and bordered on the north by the district of Thrissur, on the 

strict  Idukki, and on 

 

Three separate sections make up the district: Hills and woods, plains, and the 

seashore, respectively, make up the highland, midland, and lowland regions. The highlands 

are located at a height of around 300 m. (980 ft). Except for Muvattupuzha, the Periyar 



 

River, Kerala's longest, traverses every taluk. The district is traversed by the Chalakkudy 

River and the Muvattupuzha River. 

It consists of several lan

agriculture (low vegetation) but forest alone consists of 45.20% of total land. In the year 

2022-23, a total of nearly 430.75 hectares is affected by 391 fire incidents. According to 

data from the state pollution control board, the mean air quality index remained above 300 

PM2.5 (particulate matter) concentrations in the air for five days before the fire occurrence. 

It was 441 PM2.5 concentrations on March 5; 445 PM

PM2.5 concentrations on March 7; 324 PM

concentrations on March 9. Good breathable air quality has an index value of less than 50 

PM2.5 concentrations, while before the dump yard fire, the city's average 

was below 100 PM2.5 concentrations. 

Figure 5.2  Daily Average rain in Study Area between May 2022 

The study area is computed as 3,432 mm of rain falls on average in the district each year. 

The average rain between May 2022

precipitations also indicates that the study area has very less rain between October 2022 to 
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Daily Average rain in Study Area between May 2022 

The study area is computed as 3,432 mm of rain falls on average in the district each year. 

The average rain between May 2022 to March 2023 is shown in figure 2. In figure 2 mean 

precipitations also indicates that the study area has very less rain between October 2022 to 

River, Kerala's longest, traverses every taluk. The district is traversed by the Chalakkudy 

d cover classes like urban, water, and forest (high vegetation), 

agriculture (low vegetation) but forest alone consists of 45.20% of total land. In the year 

23, a total of nearly 430.75 hectares is affected by 391 fire incidents. According to 

m the state pollution control board, the mean air quality index remained above 300 

(particulate matter) concentrations in the air for five days before the fire occurrence.  

concentrations on March 6; 465 

concentrations on March 8; and 380 PM2.5 

concentrations on March 9. Good breathable air quality has an index value of less than 50 

concentrations, while before the dump yard fire, the city's average air quality index 

 

Daily Average rain in Study Area between May 2022 - March 2023 

The study area is computed as 3,432 mm of rain falls on average in the district each year. 

to March 2023 is shown in figure 2. In figure 2 mean 

precipitations also indicates that the study area has very less rain between October 2022 to 



 

March 2023. It is achieving its highest value of nearly 130mm in the month of August 

2022. So it may also be a reason behind these fire occurrences in forest regions. Later we 

calculate the daily mean temperature also finding its relevance over the atmospheric 

condition. 

The district has a mild temperature average temperature between May 2022 to March 2023 

as shown in figure 5.3.  

Figure 5.3 Daily  temperature in Study Area between May 2022 

The temperature rapidly increases during fire time and is largely located in the Malabar 

Coast moist forests ecoregion, while the highlands are a part of the sou

moist deciduous forests ecoregion. On the border of the districts of Ernakulam and Idukki, 

the Anamudi is the tallest mountain in South India. Sholas can be found in some areas of 

the Mankulam Forest Division and Idamalayar Reserve Forest,

be reached by road. Edamalakkudy and the Idamalayar Protected Forest, have different 

kinds of rocks, silt, and sand. The majority of the district's eastern forests are secluded and 

are a portion of the Anamalais. Temperature is
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The temperature rapidly increases during fire time and is largely located in the Malabar 

Coast moist forests ecoregion, while the highlands are a part of the south

moist deciduous forests ecoregion. On the border of the districts of Ernakulam and Idukki, 

the Anamudi is the tallest mountain in South India. Sholas can be found in some areas of 

the Mankulam Forest Division and Idamalayar Reserve Forest, however, these areas cannot 

be reached by road. Edamalakkudy and the Idamalayar Protected Forest, have different 

kinds of rocks, silt, and sand. The majority of the district's eastern forests are secluded and 

are a portion of the Anamalais. Temperature is also a very significant factor after the forest 
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a reason behind these fire occurrences in forest regions. Later we 

calculate the daily mean temperature also finding its relevance over the atmospheric 

The district has a mild temperature average temperature between May 2022 to March 2023 

 

March 2023 

The temperature rapidly increases during fire time and is largely located in the Malabar 

th-western Ghats 

moist deciduous forests ecoregion. On the border of the districts of Ernakulam and Idukki, 

the Anamudi is the tallest mountain in South India. Sholas can be found in some areas of 

however, these areas cannot 

be reached by road. Edamalakkudy and the Idamalayar Protected Forest, have different 

kinds of rocks, silt, and sand. The majority of the district's eastern forests are secluded and 

also a very significant factor after the forest 



 

fire incident it changed moderately. In March 2023 it went to its peak and affected the 

burned area and nearby areas as well. Transition class is also affected maximum in the case 

of water in figure 4. 

Fig

5.5 Method & Data: 

Since the 1970s, surface soil moisture (SSM) and change in the surface area has been 

determined by remote sensing. The primary benefit of remote sensing is that it offers 

geographically diverse data, as surface variables with spatial information are necessary for 

many applications, including evapotranspiration evaluation, soil erosion mitigation, 

irrigation scheduling, drought monitoring, and forest management.
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fire incident it changed moderately. In March 2023 it went to its peak and affected the 

burned area and nearby areas as well. Transition class is also affected maximum in the case 

Figure 5.4: Percentage of water over study area

Since the 1970s, surface soil moisture (SSM) and change in the surface area has been 

determined by remote sensing. The primary benefit of remote sensing is that it offers 

e data, as surface variables with spatial information are necessary for 

many applications, including evapotranspiration evaluation, soil erosion mitigation, 

irrigation scheduling, drought monitoring, and forest management. 
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4: Percentage of water over study area 

Since the 1970s, surface soil moisture (SSM) and change in the surface area has been 

determined by remote sensing. The primary benefit of remote sensing is that it offers 

e data, as surface variables with spatial information are necessary for 

many applications, including evapotranspiration evaluation, soil erosion mitigation, 



 

Figure 

Table 5. 1 Band Uses for calculating changes in Forest Cover

COLOR 
BAND

BLUE BAND 

GREEN BAND 

RED BAND 

NIR BAND 

SWIR BAND 

 

The study is performed by using the satellite data set Sentinel and Landsat over the cloud 

platform Google Earth Engine (GEE). G
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Figure 5.5  Methodology used in research 

Band Uses for calculating changes in Forest Cover

LANDSAT SENTINEL

BAND 
WAVE 

LENGTH 
BAND 

WAVE 
LENGTH

BAND - 2 0.45 - 0.51 BAND - 2  0.492 

BAND - 3 0.53 - 0.59 BAND - 3 0.559 

BAND - 4 0.63 - 0.67 BAND - 4 0.664 

BAND - 5 0.85 - 0.87 BAND - 8 0.833 

BAND - 7 2.1 - 2.2 BAND - 12 2.18 

The study is performed by using the satellite data set Sentinel and Landsat over the cloud 

platform Google Earth Engine (GEE). GEE is a planetary platform that has access to 

 

Band Uses for calculating changes in Forest Cover 

SENTINEL 

WAVE 
LENGTH 

0.492 - 0.496 

0.559 - 0.560 

0.664 - 0.665 

0.833 - 0.835 

2.18 - 2.20 

The study is performed by using the satellite data set Sentinel and Landsat over the cloud 

EE is a planetary platform that has access to 
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different satellite data like Sentinel, Landsat, MODIS, etc. Each satellite has the unique 

characteristic as wavelength, band combination, and resolution. Here we are accessing 

sentinel-2 and Landsat-9 for observing changes in the forest area. A detailed description of 

the analysis is shown in  the figure 5.5. 

Research is subdivided into two parts. We calculate the change in forest area from pre-fire 

and post-fire accidents. Later we perform observation over the burn area and calculate the 

different changes in the forest area. These changes are calculated by computing the change 

in a land cover class by the gradient tree boost classification model and also by computing 

the change in mean and standard deviation value of different indices like Green Normalized 

Difference Vegetation [103], Adjusted Transformed Soil Adjusted Vegetation Index 

(ATSAVI) [104], [105], Normalize difference water index (NDWI) and Enhance vegetation 

index (EVI). The methodology used in the research is illustrated in figure 5. GNDVI 

(Green Normalized Difference Vegetation) [106], [107]measures the "greenness" or 

photosynthetic activity of plants. While it saturates later than NDVI, it is a chlorophyll 

index [108]that is utilized during later phases of development. It is one of the most popular 

vegetation indices for calculating crop canopy water and nitrogen uptake. The values for 

Normalize difference water index (NDWI), like other indices, range from -1 to 1, with high 

values denoting high plant water content and coverage of a significant portion of the plant 

and low values denoting low vegetation water content and sparse cover. 

Pre-fire and post-fire[109] results are calculated by using the normalized burn ratio 

mechanism and calculated by equation 1. 

NBR = 
ேூோିௌௐூோ

ேூோା ௌௐூோ
           ....................1 
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Where: NIR : Near Infra-Red  

            SWIR: Short Wave Infra-Red  

GNDVI has a greater saturation point than NDVI and is more sensitive to changes in the 

crop's chlorophyll content. While NDVI is useful for predicting crop vigor in the early 

stages, it can be used in crops with dense canopies or in more mature phases of growth. 

GNDVI= 
ேூோିீோாா

ேூோା ீோாாே
           ....................2 

Where: NIR : Near Infra-Red  

            GREEN: GREEN Wavelength  

A water body can "stand out" against the land and vegetation by using the Normalized 

Difference Water Index (NDWI) to emphasize open water features in a satellite picture. 

NDWI  = 
ீோாாேିேூோ

 ீோாாேାேூோ
                  ....................3 

The normal reflectivity of the sea surface is maximized in the visible green wavelengths. 

The near-infrared wavelengths maximize the high reflectance of terrestrial vegetation and 

soil components while minimizing the low reflection of aquatic features. The NDWI 

equation yields positive values for water features and negative ones (or zero) for soil and 

terrestrial vegetation. 

ATSAVI  = 
∗(ேூோି∗ோாି)

(∗ேூோ)ା (ோாି∗)ା (∗(ଵାమ))
       ...................4 

In dense vegetation, EVI is more sensitive and can compensate for some atmospheric 

conditions and canopy background noise. While ATSAVI is used where vegetation cover is 

very low.  

EVI  = 
ଶ.ହ∗(ௗ ହିௗ ସ)

 ௗ ହା∗ௗ ସି.ହ∗ௗ ଶାଵ
         ....................5 
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Classification is performed using the Gradient tree boost machine learning classifier 

algorithm [50]. It provides a hypothetical model in the form of an ensemble of decision 

trees. Mainly it is a collection of nodes of weak prediction models. The resulting technique, 

called gradient-boosted trees, typically beats random forest when a decision tree is a weak 

learner. The construction of a gradient-boosted trees [49]model follows the same stage-wise 

process as previous boosting techniques, but it generalizes other techniques by optimizing 

any differentiable loss function, later we computed accuracy by using the confusion matrix 

by equation 6 and kappa coefficient by equation 7. Cohen recommended the following 

interpretation of the Kappa result: values 0 as showing no agreement and 0.01-0.20 as none 

to the partial agreement, 0.21-0.40 as fair agreement, 0.41- 0.60 as moderate agreement, 

0.61-0.80 as significant agreement, and 0.81-1.00 as almost perfect agreement 

                               Accuracy = 
்ା்ே

்ା்ேାிାிே
                 .....................6 

Where    TP = True Positive 

 TN= True Negative 

 FP = False Positive 

 FN = False Negative 

                                           Kappa= 
ି

ଵି
                           .......................7    

Where    Po = Observed proportional agreement 

   Pe= Expected proportional agreement 

 

 

 



 

5.6: Result: 

Deforestation is taking place day to day in a very large manner, sometimes it is 

being done by human activity, and sometimes it is b

We are calculating a change in the forest area of Kochi district from all the above mention 

activity. The primary reason for the change in forest area over the study area is some fire 

accidents that occurred betwee

Figure 5. 6  Output Generated over Landsat

But we are not only rigid for these fire issues we also calculate all o

reasons also for deforestation. So here we calculated vegetation indices like NDVI 

(Normalize Difference Vegetation Index), GNDVI (Green Normalize Difference 

Vegetation Index), ATSAVI (Adjusted Transformed Soil Vegetation Index), and EVI 

(Enhanced Vegetation Index) these vegetation indices are used for the calculation of 
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Deforestation is taking place day to day in a very large manner, sometimes it is 

being done by human activity, and sometimes it is by natural activity, like flood, and fire. 

We are calculating a change in the forest area of Kochi district from all the above mention 

The primary reason for the change in forest area over the study area is some fire 

accidents that occurred between January 2023 to March 2023.  

Output Generated over Landsat-9 data sets before fire incident

But we are not only rigid for these fire issues we also calculate all o

reasons also for deforestation. So here we calculated vegetation indices like NDVI 

(Normalize Difference Vegetation Index), GNDVI (Green Normalize Difference 

Vegetation Index), ATSAVI (Adjusted Transformed Soil Vegetation Index), and EVI 

anced Vegetation Index) these vegetation indices are used for the calculation of 

Deforestation is taking place day to day in a very large manner, sometimes it is 

y natural activity, like flood, and fire. 

We are calculating a change in the forest area of Kochi district from all the above mention 

The primary reason for the change in forest area over the study area is some fire 

 

9 data sets before fire incident 

But we are not only rigid for these fire issues we also calculate all other possible 

reasons also for deforestation. So here we calculated vegetation indices like NDVI 

(Normalize Difference Vegetation Index), GNDVI (Green Normalize Difference 

Vegetation Index), ATSAVI (Adjusted Transformed Soil Vegetation Index), and EVI 

anced Vegetation Index) these vegetation indices are used for the calculation of 



 

Change of Vegetation indices and also for evaluating the effect on soil moisture and water 

due to these changes.  

Figure 5.7  Output Generated over Landsat

For the calculation of forest change in the study area we fir

in figure 5.6 and figure 

Boosting. For this, we calculated about 1200 data points of different land cover classes and 

took 70% data as training points and 30% data a

classification are shown in figure 6 and figure 7 and these changes are described that a large 

amount of forest loss occurred by these fire incidents. 
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Change of Vegetation indices and also for evaluating the effect on soil moisture and water 

 

Output Generated over Landsat-9 data sets after fire incident

For the calculation of forest change in the study area we first calculate the change as shown 

6 and figure 5.7 using a supervised classification technique Gradient Tree 

Boosting. For this, we calculated about 1200 data points of different land cover classes and 

took 70% data as training points and 30% data as testing points. Results of this 

classification are shown in figure 6 and figure 7 and these changes are described that a large 

amount of forest loss occurred by these fire incidents.  

Change of Vegetation indices and also for evaluating the effect on soil moisture and water 

 

9 data sets after fire incident 

st calculate the change as shown 

7 using a supervised classification technique Gradient Tree 

Boosting. For this, we calculated about 1200 data points of different land cover classes and 

s testing points. Results of this 

classification are shown in figure 6 and figure 7 and these changes are described that a large 



 

Figure 5.8 Fire Incident happen between January

Figure 5.9 Fire Incident happens between February 

So for calculating these losses here, we computed the percentage of the forest before the 

fire incident (pre-fire) and after the fire incident (post
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Fire Incident happen between January- February Month

Fire Incident happens between February - March Month

So for calculating these losses here, we computed the percentage of the forest before the 

fire) and after the fire incident (post-fire). After classification, we 

 

February Month 

 

March Month 

So for calculating these losses here, we computed the percentage of the forest before the 

fire). After classification, we 



 

computed the accuracy of the classification result by confusion matrix and kappa 

coefficient, total accuracy computed by confusion matrix is 89.45% and by kappa 

coefficient is 87.68%. 

On focusing output generated by gradient tree boost in figure 6 and figure 7, there i

change happening in the east

changes is fire accidents in these areas. So we calculate fire accidents in this area, mainly 

two major fire accidents found at two places, and many vegetation 

this fire accident. Figure 8 and figure 9 shows the change in vegetation due to these fire 

accidents in the study area.

Figure 

The calculation of burned area is sub

this we can easily calculate the level of loss and growth as well as the type of loss and 

growth. The level of loss represents how many areas are highly affected by the fire incident 
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accuracy of the classification result by confusion matrix and kappa 

coefficient, total accuracy computed by confusion matrix is 89.45% and by kappa 

On focusing output generated by gradient tree boost in figure 6 and figure 7, there i

change happening in the east-south region of the study area. The reason behind these 

changes is fire accidents in these areas. So we calculate fire accidents in this area, mainly 

two major fire accidents found at two places, and many vegetation 

this fire accident. Figure 8 and figure 9 shows the change in vegetation due to these fire 

accidents in the study area. 

Figure 5.10  Change in Study Area during Fire Incident

The calculation of burned area is sub-categorized into seven different layers and by doing 

this we can easily calculate the level of loss and growth as well as the type of loss and 

growth. The level of loss represents how many areas are highly affected by the fire incident 

accuracy of the classification result by confusion matrix and kappa 

coefficient, total accuracy computed by confusion matrix is 89.45% and by kappa 

On focusing output generated by gradient tree boost in figure 6 and figure 7, there is a lot of 

south region of the study area. The reason behind these 

changes is fire accidents in these areas. So we calculate fire accidents in this area, mainly 

two major fire accidents found at two places, and many vegetation changes occur due to 

this fire accident. Figure 8 and figure 9 shows the change in vegetation due to these fire 

 

Change in Study Area during Fire Incident 

en different layers and by doing 

this we can easily calculate the level of loss and growth as well as the type of loss and 

growth. The level of loss represents how many areas are highly affected by the fire incident 
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due to fire accidents and the low area affected by the fire incident. 

 

Figure 5.11 Green Normalize Difference Vegetation Index Calculated on Study Area 

during Forest Fire Time over Landsat-9 and Sentinel 2 data set 

Later for extensive classification we calculated some vegetation indices. The main active 

forest fire episodes occurred between February and March in this region. A study is done 

on the burned areas in severity class before the fire and after the fire incident and found 

gradual change, which is shown in figure 5.10.  

 

Figure 5.12 Normalize Difference Water Index Calculated on Study Area during Forest 

Fire over Landsat -9 and Sentinel 2 data set 
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Figure 5.13  Adjusted Transformed Soil Adjusted Vegetation Index Calculated on Study 

Area during Forest Fire over Landsat -9 and Sentinel 2 data set 

 

Figure 5.14  Enhanced Vegetation Index Calculated on Study Area during Forest Fire over 

Landsat -9 and Sentinel 2 data set 

Green Normalize Difference vegetation index, Normalize Difference Water Index, 

Adjusted Transformed Soil Adjusted Vegetation Index, and Enhanced Vegetation Index is 

calculated over Ernakulum during the forest fire time from September 2022 to March 2023 

and we found that time when rapid fire arises its mean and standard deviation value change. 
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For verification purposes, we have computed the mean GNDVI over two data sets Landsat-

9 and Sentinel-2. These two data sets are easily available in google earth engine directory 

basic difference between both data sets in term of resolution Landsat -9 data sets having 

resolution 30 meter and Sentinel data sets having resolution 10 meter, these data sets also 

have a collection of nine different bands each band having unique attributes and the ratio of 

these bands providing a different signature for each vegetation indices. Figure 11 shows the 

change in green normalizes difference vegetation index over both data sets and both data 

sets having nearly same result over the study area.  Later we calculate mean and standard 

deviation value over normalize difference water index (NDWI), adjusted transformed soil 

adjusted vegetation index (ATSAVI)  and enhanced vegetation index (EVI). For observing 

effects of fire incident over water, soil and natural vegetation indices. Figure 12, Figure 13 

and Figure 14 shows the result obtained from NDWI, ATSAVI [105], and EVI over 

Landsat -9[110] and Sentinel-2 data sets [15], these result shows that change in these 

indices occurred at the time of fire incident over study area and also after the fire incident 

also.. From the above observation, we find that fire forest reduces greenery as well as 

affects water and soil also. Equations (1 to 5) are used for the calculation of these indices 

and finding change during fire incidents. Equation 1 is used for calculating a change in the 

study area due to fire incidents and providing details results which are shown in figure 8 

and figure 9. Areas affected by these fire incidents are described in figure 10. From the 

result, it is shown that a large area of forest loss nearly happened over the study area due to 

fire incidents. These fire incidents not only disrupted climate conditions and global 

warming but also had a huge effect on soil and other vegetation indices. 
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5.7: Conclusion 

The proposed model of analysis is used to compute forest loss in Ernakulum (Kochi) using 

Landsat-9 OLI, and Sentinels 2 satellite data due to the occurrence of the fire incident. 

Through our analysis, we found deciduous forests are more vulnerable to fires. About 

18.2% of vegetation area was affected by fires in 2023. Among all types of vegetation 

classes, vegetation that has higher density is affected most by the fire incident. Fire not only 

destroys vegetation cover but also has an impact on soil and water as well as on climate 

conditions also. We are also focused on finding factors behind these multiple fire 

occurrences over study and find an increase in temperature always increases the probability 

of fire occurrence. The study has provided valuable insights into the dynamic nature of 

forest ecosystems in response to fire incidents. The application of spectral indices and 

machine learning algorithms to Sentinel-2 data has enabled precise and rapid detection of 

short-term forest cover changes, particularly in the aftermath of fire events in the 

Ernakulam area. The significance of this research lies in its potential to inform timely 

decision-making for forest conservation and disaster management. By accurately 

identifying and characterizing short-term changes [111]caused by fires, it aids in assessing 

the impact of such incidents on the environment, facilitating a swift response to mitigate 

further damage and restore affected areas.Furthermore, the methodology employed in this 

study offers a valuable framework that can be applied in a broader context to monitor and 

manage forest ecosystems in the face of increasing fire incidents. The integration of 

spectral indices and machine learning algorithms with Sentinel-2 data showcases a versatile 

and effective approach for environmental monitoring, with applications extending beyond 

Ernakulam. 
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Chapter 6: 

Development of User Interface for detecting Changes over 

Different Multispectral Band and indices. 

6.1 Abstract: 

The rapid urbanization and environmental changes occurring globally have 

necessitated the accurate and timely monitoring of land cover changes. Remote sensing 

technology, with its capacity to provide extensive and consistent data over various spectral 

bands and indices, plays a pivotal role in this endeavor. This chapter explores the critical 

need for an effective user interface in the context of detecting land cover changes using 

remote sensing data. 

The study begins by addressing the significance of monitoring land cover changes, 

emphasizing its relevance in climate change mitigation, natural resource management, 

disaster response, and urban planning. To effectively utilize the wealth of data generated by 

remote sensing instruments, an intuitive and user-friendly interface is essential. The paper 

presents a detailed analysis of the challenges associated with handling complex data and 

explores the implications of inefficient user interfaces in land cover change detection 

processes. 

The next section delves into the fundamentals of remote sensing, explaining the 

principles of data acquisition, spectral bands, and vegetation indices commonly used in 

land cover change analysis. It highlights the diversity and complexity of remote sensing 

data, including multispectral and hyperspectral images, synthetic aperture radar (SAR) data, 
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and various indices like the Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI). Understanding these data sources and their attributes is 

crucial for building an effective user interface for land cover change detection. 

The core of the paper focuses on the need for a user interface [99] that simplifies the 

process of data selection, preprocessing, analysis, and visualization. The challenges of data 

management and manipulation are discussed, and the paper provides insights into how a 

well-designed user interface can streamline these tasks. Examples of existing remote 

sensing software and platforms are examined to identify their strengths and limitations in 

terms of user-friendliness. 

The study further explores the role of machine learning and artificial intelligence in 

automating land cover change detection processes. It highlights the potential of user 

interfaces in facilitating human-computer collaboration, allowing domain experts to harness 

the power of machine learning algorithms. The paper discusses the integration of user 

interfaces with machine learning models for improved accuracy and efficiency in land 

cover change detection. 

In addition to discussing the technical aspects of user interfaces, the paper considers 

the importance of user experience (UX) design principles in creating effective tools for land 

cover change detection. It discusses the need for user interfaces that are not only functional 

but also aesthetically pleasing and easy to navigate. This section also addresses the 

importance of user feedback and iterative design processes to refine the user interface for 

maximum usability. 
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The paper concludes by highlighting the critical role of user interfaces in enhancing 

the accessibility and utility of remote sensing data for land cover change detection. It 

emphasizes the potential benefits of such interfaces, including improved data interpretation, 

increased efficiency, and broader adoption of remote sensing technology in environmental 

and urban planning applications. The study underscores the need for interdisciplinary 

collaboration between remote sensing experts, computer scientists, and UX designers to 

develop user interfaces that meet the specific needs of end-users. 

In a world increasingly influenced by rapid land cover changes, having user 

interfaces that bridge the gap between complex remote sensing data and end-users is 

essential. This paper provides a comprehensive exploration of the need for such interfaces 

and offers valuable insights into their design and implementation. 

6.2 Introduction: 

The Earth's surface is constantly undergoing transformation, driven by factors such 

as urbanization, deforestation, agricultural expansion, and climate change. Monitoring these 

changes is vital for understanding and managing our environment, natural resources, and 

the impacts of human activities. Remote sensing technology, with its ability to capture vast 

amounts of data through satellite imagery and other sensors, has become an invaluable tool 

for tracking changes in land cover over time. However, as the volume and complexity of 

remote sensing data continue to increase, the need for efficient tools and user interfaces to 

analyze and interpret this data has become paramount. This paper explores the imperative 

need for user interfaces in the context of detecting land cover changes using different 

spectral bands and indices, shedding light on their role in making remote sensing 

technology accessible and effective for a broader audience.  
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6.2.1:  Background 

Land cover changes, including urban expansion, deforestation, agricultural 

intensification, and climate-induced alterations, have wide-ranging consequences on 

ecosystems, biodiversity, and human societies. In the era of climate change and rapid 

urbanization, tracking and understanding these changes is critical for informed decision-

making. Traditional methods of monitoring land cover changes relied heavily on ground 

surveys and aerial photography. While these methods provided valuable information, they 

were often limited in their spatial and temporal coverage. The advent of remote sensing 

technology revolutionized our ability to capture data on land cover changes on a global 

scale. 

Remote sensing involves the use of satellite, airborne, or ground-based sensors to 

acquire data from the Earth's surface. These sensors capture data in various spectral bands, 

providing valuable information on different aspects of the Earth's surface, such as 

vegetation health, water content, and land use. Moreover, remote sensing data can be 

processed to derive various vegetation indices, which offer insights into vegetation cover, 

health, and stress. The data generated by remote sensing instruments are rich and diverse, 

comprising multispectral and hyperspectral images, synthetic aperture radar (SAR) data, 

and a variety of indices such as the Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), and many more. 

The potential for extracting critical information from remote sensing data has 

propelled the use of these technologies across various domains. In environmental science, 

remote sensing is indispensable for monitoring deforestation, land degradation, and habitat 

changes. Agriculture benefits from remote sensing to assess crop health, optimize 
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irrigation, and detect diseases. Urban planners use remote sensing to track urban growth 

and plan for sustainable development. Disaster management agencies rely on it for 

assessing the impacts of natural calamities, such as wildfires and floods. Remote sensing 

data has also found applications in climate change research, water resource management, 

and conservation efforts, among others. 

6.3 The Challenge: Managing Complex Remote Sensing Data 

While the potential of remote sensing data is vast, managing, processing, and 

extracting meaningful insights from this data can be a complex and challenging endeavor. 

Remote sensing data is characterized by its multi-dimensional nature, as it spans a wide 

range of spectral bands and indices, each with specific attributes and uses. Additionally, the 

sheer volume of data generated by satellites and sensors can be overwhelming. The 

complexities associated with remote sensing data can act as barriers, preventing many 

potential users, including scientists, land managers, and policymakers, from effectively 

harnessing the technology's capabilities. 

One of the primary challenges in using remote sensing data is the need for data 

preprocessing. This often involves tasks like atmospheric correction, radiometric 

calibration, geometric correction, and mosaicking. These preprocessing steps are crucial to 

ensure the accuracy and consistency of the data, but they require expertise and specific 

software tools. Users without the necessary background and resources may struggle to 

perform these tasks effectively. 

Furthermore, the diverse nature of remote sensing data necessitates knowledge 

about the spectral bands, indices, and their interpretation. For instance, the NDVI is a 
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commonly used vegetation index that provides insights into vegetation health. Users need 

to understand that NDVI values range from -1 to 1, with higher values indicating healthier 

vegetation. Similarly, SAR data is complex and requires knowledge of radar principles and 

image interpretation. Understanding and working with such data can be a barrier for those 

who are not specialized in remote sensing. 

6.4 The Solution: Spectral Indices Interfaces for Land Cover Change Detection 

To address the challenges associated with remote sensing data, there is a pressing 

need for user interfaces that simplify the process of data selection, preprocessing, analysis, 

and visualization. An effective user interface can bridge the gap between complex data and 

users with varying levels of expertise, making remote sensing technology accessible to a 

broader audience. Such interfaces can empower non-experts and domain specialists alike to 

explore, analyze, and interpret remote sensing data without requiring an in-depth 

understanding of the underlying technicalities. 

1. Data Selection and Retrieval: Users should be able to easily access and select 

remote sensing data for their specific region and time of interest. User interfaces can 

provide tools to browse, search, and retrieve relevant data from various sources. 

2. Preprocessing and Analysis: The user interface should offer tools for data 

preprocessing, allowing users to perform necessary corrections and enhancements without 

advanced technical knowledge. Additionally, the interface can integrate algorithms for land 

cover change detection, making it easier to analyze and interpret the data. 

3. Visualization and Interpretation: Effective visualization is crucial for 

conveying information. User interfaces should provide options for generating meaningful 
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and informative visual representations of land cover changes, such as maps, time-series 

plots, and 3D reconstructions. 

4. Machine Learning Integration: Machine learning and artificial intelligence 

(AI) play a significant role in automating the detection of land cover changes. User 

interfaces can facilitate the integration of machine learning models, enabling users to apply 

AI techniques to remote sensing data with ease. 

5. User Experience (UX) Design: The design of user interfaces should prioritize 

user experience, ensuring that the tools are intuitive, efficient, and aesthetically pleasing. 

UX design principles can make a significant difference in the accessibility and 

effectiveness of the interface. 

6.5 Method And Data :  

Vegetation indices[112][113] are extremely useful for monitoring change detection in 

various environmental and land use applications. Here's how these indices contribute to 

change detection: 

1. Assessing Vegetation Health and Density: Vegetation indices like NDVI 

(Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), and 

others provide a quantifiable measure of vegetation health and density. By 

comparing reflectance in different spectral bands, these indices can detect changes 

in the condition of vegetation, whether it's thriving, stressed, or degraded. These 

changes in vegetation health are often the first signs of broader environmental 

changes. 
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2. Detecting Land Cover Changes: Vegetation indices are widely used to monitor 

land cover changes, such as deforestation, urban expansion, and reforestation. As 

vegetation is replaced or altered by land use changes, these indices can detect these 

shifts over time. Reduced NDVI values, for instance, might indicate deforestation, 

while an increase in NDVI could signify reforestation. 

3. Identifying Water Bodies and Wetlands: Indices like NDWI (Normalized 

Difference Water Index) are specifically designed to detect water bodies. Change 

detection with NDWI is crucial for monitoring water resources, flood events, and 

changes in wetland areas. 

4. Monitoring Agricultural Practices: In agriculture, vegetation indices[114] are 

used to assess crop health, growth stages, and yield predictions. Change detection 

through these indices can reveal the impact of various farming practices, such as 

irrigation, fertilization, and pest control. 

5. Evaluating Ecosystem Health: In ecological studies, vegetation indices help 

monitor ecosystem health and changes in biodiversity. Tracking variations in 

vegetation density and health can provide insights into how environmental changes 

impact ecosystems over time. 

6. Environmental Impact Assessment: Vegetation indices are essential for assessing 

the environmental impact of infrastructure development, land use changes, and 

urbanization. They help policymakers and planners understand how these activities 

affect the natural environment. 
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7. Drought and Climate Change Monitoring: Vegetation indices can detect the 

early signs of drought by assessing reduced vegetation health. Long-term 

monitoring can also help in assessing the impact of climate change on ecosystems 

and vegetation patterns. 

8. Flood and Disaster Monitoring: In disaster management, vegetation indices play a 

crucial role in flood detection. Satellite imagery with vegetation indices can show 

changes in water bodies during and after flood events. 

9. Precision Agriculture: Farmers use these indices to optimize irrigation, 

fertilization, and other practices, thus increasing crop yield and sustainability. 

Here we detailed some Vegetation Indices that we are using in our spectral Interface: 

6.5.1 Atmospherically Resistant Vegetation Index (ARVI) : 

Atmospherically Resistant Vegetation Index is a vegetation index used in remote sensing 

and environmental monitoring to assess vegetation health while minimizing the impact of 

atmospheric conditions. ARVI [97] is particularly useful in areas where atmospheric 

interference, such as haze, aerosols, and varying illumination, can affect the accuracy of 

other vegetation indices like NDVI [85], [115] (Normalized Difference Vegetation Index). 

ARVI is calculated using the following formula: 

ARVI = (NIR - (1 - L) * Red) / (NIR + (1 + L) * Red) 

 NIR (Near-Infrared): Reflectance in the near-infrared portion of the 

electromagnetic spectrum. 

 Red: Reflectance in the red portion of the spectrum. 
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 L: A parameter to adjust for atmospheric conditions, often set to a specific value 

based on the characteristics of the study area. 

Components: 

1. NIR - Red: This part of the formula represents the difference between the 

reflectance in the near-infrared (NIR) and red bands. Healthy vegetation typically 

reflects more NIR and absorbs more red light, resulting in a positive value for this 

difference. 

2. NIR + Red: The sum of NIR and red reflectance. This denominator helps normalize 

the index, making it less sensitive to varying illumination conditions and 

atmospheric effects. 

3. (1 - L) and (1 + L): These parameters account for atmospheric conditions. They are 

often chosen based on the characteristics of the study area to reduce the impact of 

atmospheric interference on the index. 

Key Characteristics and Uses: 

1. Vegetation Health Assessment: Like other vegetation indices, ARVI is used to 

assess the health and density of vegetation. Healthy and dense vegetation will yield 

higher ARVI values. 

2. Change Detection: ARVI is employed in change detection studies, such as 

monitoring land cover changes, deforestation, reforestation, and urban expansion. It 

is particularly valuable in regions where atmospheric conditions may otherwise 

distort the results of other vegetation indices. 
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3. Environmental Management: It is used in environmental impact assessments to 

evaluate the effects of infrastructure development and land use changes on 

vegetation and ecosystems. 

4. Precision Agriculture: ARVI is applied in precision agriculture to monitor crop 

health and optimize farming practices. It assists in detecting areas of stress or 

nutrient deficiencies in crops. 

6.5.2 Enhanced Vegetation Index 2: 

 Enhanced Vegetation Index 2[116] is a vegetation index used in remote sensing 

and environmental monitoring. It is a simplified version of the Enhanced Vegetation Index 

(EVI) and the Enhanced Vegetation Index 2 (EVI2), making it computationally more 

efficient while still providing a reliable measure of vegetation health and density. EVI2 is 

particularly useful in regions with varying atmospheric conditions where the presence of 

aerosols or clouds can affect the accuracy of vegetation assessments. 

EVI2 is calculated using the following formula: 

EVI2 = 2.5 * ((NIR - Red) / (NIR + 2.4 * Red + 1)) 

 NIR (Near-Infrared): Reflectance in the near-infrared portion of the 

electromagnetic spectrum. 

 Red: Reflectance in the red portion of the spectrum. 

Components: 

1. NIR - Red: This part of the formula represents the difference between the 

reflectance in the near-infrared (NIR) and red bands. Healthy vegetation typically 
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reflects more NIR and absorbs more red light, resulting in a positive value for this 

difference. 

2. NIR + 2.4 * Red + 1: The denominator of the formula helps normalize the index. 

The addition of 1 prevents division by zero and makes the index less sensitive to 

varying illumination conditions. 

Key Characteristics and Uses: 

1. Vegetation Health Assessment: EVI2, like other vegetation indices [74], is used to 

assess the health and density of vegetation. Higher EVI2 values typically 

correspond to healthier and denser vegetation. 

2. Change Detection: EVI2 is employed in change detection [19] studies, including 

monitoring land cover changes, deforestation, reforestation, and urban expansion. 

Its atmospheric correction properties make it useful for regions with challenging 

atmospheric conditions. 

3. Environmental Monitoring: EVI2 is used in environmental impact assessments to 

evaluate the effects of land use changes on vegetation and ecosystems. It contributes 

to the assessment of ecosystem health. 

4. Precision Agriculture: In agriculture, EVI2 is applied to monitor crop health, 

growth stages, and yield predictions. It assists in detecting areas of stress or nutrient 

deficiencies in crops. 
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6.5.3 Normalized Difference Vegetation Index (NDVI) :  

Normalized Difference Vegetation Index is one of the most widely used vegetation indices 

in remote sensing and environmental monitoring. NDVI quantifies the density and health of 

vegetation in a given area by comparing the reflectance of two different spectral bands from 

satellite or aerial imagery. It is a fundamental tool for assessing changes in vegetation 

cover, health, and land use over time. 

Here's a detailed explanation of NDVI: 

Formula: NDVI is calculated using the following formula: 

NDVI = (NIR - Red) / (NIR + Red) 

 NIR (Near-Infrared): Reflectance in the near-infrared portion of the 

electromagnetic spectrum. 

 Red: Reflectance in the red portion of the spectrum. 

Components: 

1. NIR - Red: This part of the formula represents the difference between the 

reflectance in the near-infrared (NIR) and red bands. Healthy vegetation typically 

reflects more NIR and absorbs more red light, resulting in a positive value for this 

difference. 

2. NIR + Red: The sum of NIR and red reflectance. This denominator helps normalize 

the index, making it less sensitive to varying illumination conditions and 

atmospheric effects. 

Key Characteristics and Uses: 
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1. Vegetation Health Assessment: NDVI is used to assess the health and density of 

vegetation. Healthy and dense vegetation will yield higher NDVI values, while 

barren or non-vegetated areas will have lower or even negative NDVI values. 

2. Change Detection: NDVI is a key tool for change detection studies. It is applied in 

monitoring land cover changes, such as deforestation, reforestation, urbanization, 

and other land use transformations. 

3. Environmental Monitoring: NDVI is employed in environmental impact 

assessments to evaluate the effects of infrastructure development, mining, and land 

use changes on vegetation and ecosystems. 

4. Precision Agriculture: In agriculture, NDVI is used for precision farming. It helps 

monitor crop health, growth stages, and the effectiveness of irrigation and 

fertilization practices. 

5. Ecosystem Studies: NDVI contributes to the monitoring of ecosystem health, 

especially in assessing the impact of climate change and other environmental factors 

on vegetation. 

6. Drought and Water Stress Detection: NDVI is used to identify areas suffering 

from water stress or drought. Decreased vegetation health is reflected in lower 

NDVI values. 

7. Urban Planning: NDVI is also used for urban planning and management, helping 

assess green spaces, tree cover, and the urban heat island effect. 

8. Forestry: It plays a vital role in forest management, aiding in monitoring forest 

health and changes in forest cover. 
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Interpretation of NDVI Values: 

 NDVI values range from -1 to 1. 

 Values close to 1 represent healthy, dense vegetation. 

 Values close to 0 indicate sparse or stressed vegetation, barren land, or urban areas. 

 Negative values often represent non-vegetated surfaces such as water bodies or 

clouds. 

6.7.4 Normalized Difference Water Index (NDWI): 

Normalized Difference Water Index is a remote sensing vegetation index used to detect and 

quantify the presence of water in various environments. NDWI is particularly valuable for 

monitoring changes in water bodies, wetlands, and aquatic ecosystems. It's based on the 

differences in reflectance between the near-infrared (NIR) and short-wave infrared (SWIR) 

bands of remote sensing data. 

Here's a detailed explanation of NDWI: 

Formula: NDWI is calculated using the following formula: 

NDWI = (NIR - SWIR) / (NIR + SWIR) 

 NIR (Near-Infrared): Reflectance in the near-infrared portion of the 

electromagnetic spectrum. 

 SWIR (Short-Wave Infrared): Reflectance in the short-wave infrared portion of 

the spectrum. 

Components: 
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1. NIR - SWIR: This part of the formula represents the difference between the 

reflectance in the near-infrared (NIR) and short-wave infrared (SWIR) bands. Water 

absorbs SWIR radiation, while vegetation and other surfaces reflect it. So, areas 

with water will yield positive NDWI values. 

2. NIR + SWIR: The sum of NIR and SWIR reflectance. This denominator helps 

normalize the index, making it less sensitive to varying illumination conditions and 

atmospheric effects. 

Key Characteristics and Uses: 

1. Water Detection: NDWI is primarily used to identify the presence of water in a 

landscape. Water bodies, such as lakes, rivers, and ponds, typically have positive 

NDWI values, whereas non-water surfaces, like land or built-up areas, tend to yield 

lower or negative NDWI values. 

2. Change Detection: NDWI [86]is essential for monitoring changes in water bodies 

over time, including assessing changes in water levels, identifying flood events, and 

tracking alterations in wetland areas. 

3. Wetland Mapping: NDWI is widely used in wetland mapping and conservation 

efforts to monitor the health and extent of wetland ecosystems. Changes in NDWI 

values can indicate changes in wetland conditions. 

4. Flood Monitoring: NDWI is valuable for flood monitoring and management. It 

aids in identifying flood extents and changes in water bodies during flood events. 

5. Hydrological Studies: NDWI is used in hydrological studies to analyze changes in 

water resources and assess the impact of land use changes on water bodies. 
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6. Agriculture: NDWI can be applied in agriculture to monitor soil moisture and 

assess irrigation needs. It helps in optimizing water usage in farming. 

7. Ecosystem Studies: It contributes to the study of aquatic ecosystems and can be 

used to track changes in aquatic habitats and ecosystems over time. 

Interpretation of NDWI Values: 

 Positive NDWI values indicate the presence of water. 

 Values close to 1 represent open water bodies with high reflectance in the NIR and 

absorption in the SWIR. 

 Values close to 0 indicate surfaces with limited water content. 

 Negative values may represent clouds or other non-vegetated surfaces. 

6.5.5 Soil-Adjusted Vegetation Index (SAVI): 

Soil-Adjusted Vegetation Index is a vegetation index used in remote sensing and 

environmental monitoring to assess vegetation health and density, particularly in areas 

where exposed soil or non-photosynthetic vegetation may affect traditional vegetation 

indices. SAVI[87] was developed to account for variations in soil brightness, which can 

have a significant impact on the accuracy of vegetation assessments[117]. 

SAVI = ((NIR - Red) / (NIR + Red + L)) * (1 + L) 

 NIR (Near-Infrared): Reflectance in the near-infrared portion of the 

electromagnetic spectrum. 

 Red: Reflectance in the red portion of the spectrum. 
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 L: A parameter used to adjust for soil brightness. Typically, L is set to a specific 

value based on the characteristics of the study area. 

Components: 

1. NIR - Red: This part of the formula represents the difference between the 

reflectance in the near-infrared (NIR) and red bands. Healthy vegetation reflects 

more NIR and absorbs more red light, resulting in a positive value for this 

difference. 

2. NIR + Red + L: The sum of NIR, red, and the L parameter. The denominator helps 

normalize the index and reduce the influence of soil brightness. 

3. (1 + L): A multiplier that helps adjust the index based on the soil brightness 

parameter L. 

Key Characteristics and Uses: 

1. Soil Brightness Correction: SAVI is designed to minimize the impact of exposed 

soil or non-photosynthetic vegetation in areas with low vegetation cover. It helps 

provide more accurate assessments of vegetation health by reducing the influence of 

soil brightness. 

2. Vegetation Health Assessment: SAVI is used to assess the health and density of 

vegetation. It is particularly useful in areas where soil brightness can distort 

traditional vegetation indices like NDVI. 
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3. Change Detection: SAVI is employed in change detection studies to monitor 

changes in vegetation cover, assess land degradation, and track ecological changes 

in regions with challenging conditions, such as arid and semi-arid areas. 

4. Environmental Impact Assessment: It is used in environmental impact 

assessments to evaluate the effects of land use changes on vegetation and 

ecosystems, particularly in regions where sparse vegetation is prevalent. 

5. Agriculture: SAVI can be applied in agriculture to monitor crop health and 

optimize farming practices. It helps in assessing the effectiveness of irrigation and 

fertilization practices. 

Interpretation of SAVI Values: 

 SAVI values typically range from -1 to 1. 

 Negative values often represent barren or non-vegetated surfaces. 

 Values close to 0 indicate sparse or stressed vegetation, barren land, or urban areas. 

 Positive values represent healthy and dense vegetation. 

 

6.6 Result:  

The development of the "Spectral Indices Interface" was guided by the need to 

create a versatile and user-friendly tool for extracting valuable information from  



 

Figure 6.1

satellite imagery. This interface was designed to empower users to estimate various 

Vegetation Indices (VIs) and visualize their temporal evolution within user

The supported imagery sources include Landsat 7, Landsat 8, Landsat 9, and Sentinel

ensuring comprehensive coverage for a wide range of applications.
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Figure 6.1 Work Flow Of Spectral Indicies Interface

satellite imagery. This interface was designed to empower users to estimate various 

Vegetation Indices (VIs) and visualize their temporal evolution within user

imagery sources include Landsat 7, Landsat 8, Landsat 9, and Sentinel

ensuring comprehensive coverage for a wide range of applications. 

 

Work Flow Of Spectral Indicies Interface 

satellite imagery. This interface was designed to empower users to estimate various 

Vegetation Indices (VIs) and visualize their temporal evolution within user-defined areas. 

imagery sources include Landsat 7, Landsat 8, Landsat 9, and Sentinel-2, 
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The key design principles underlying the Spectral Indices Interface were centered on 

accessibility, functionality, and adaptability. The primary objectives were to provide users 

with the means to calculate and analyze VIs, particularly in agriculture, and to offer a 

convenient way to plot time series of these indices for specific regions of interest defined 

by the user. 

A fundamental aspect of the Spectral Indices Interface is that it should be user-friendly, 

eliminating the need for additional software installations. Users can access the interface 

through a web-based platform, where they can define the area of interest through polygons. 

The interface leverages the capabilities of Google Earth Engine (GEE), a cloud-based 

platform for geospatial data analysis, enabling efficient processing and analysis of large-

scale satellite imagery datasets. 

The Spectral Indices Interface facilitates the extraction and visualization of VIs, which are 

essential tools for assessing vegetation health, land cover changes, and water resource 

distribution. Vegetation Indices are calculated using mathematical formulas that take 

advantage of the differential reflectance characteristics of healthy vegetation, stressed 

vegetation, and non-vegetated surfaces in various spectral bands. 

The general methodology of the Spectral Indices Interface is outlined in Figure 6.1. The 

process involves collecting and analyzing atmospherically corrected land surface 

reflectance images from Landsat (missions 7, 8, and 9) and Sentinel-2. These images are 

available from 2003 to the present, ensuring an extensive historical dataset for analysis. 

Users can select the appropriate satellite source (Landsat or Sentinel-2) based on their 

specific requirements and data availability. This flexibility allows users to tailor their 



 

analysis to different research and application needs.

available for calculation within the Spectral Indices Interface:

 

Figure 6.2: Snip of User Interface available at 
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analysis to different research and application needs. Two dataset selection option are 

calculation within the Spectral Indices Interface: 

Snip of User Interface available at Spectral Indices Interface (earthengine.app)

Two dataset selection option are 

 

Spectral Indices Interface (earthengine.app)  



 

1. Landsat (7, 8, and 9): This option provides a comprehensive dataset from the Landsat 

missions, offering long-term observations and historical data for analysis.

2. Sentinel-2: Sentinel-2 imagery is available for users who prefer this data source. It is 

known for its high spatial resolution and frequent revisits, making it suitable for 

applications requiring more recent and detailed information.

Figure 6.3 Google Earth Engine View of User Interface with selecting any area by using 

drawing tool available at 
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and 9): This option provides a comprehensive dataset from the Landsat 

term observations and historical data for analysis. 

2 imagery is available for users who prefer this data source. It is 

h spatial resolution and frequent revisits, making it suitable for 

applications requiring more recent and detailed information. 

Google Earth Engine View of User Interface with selecting any area by using 

drawing tool available at Spectral Indices Interface (earthengine.app)

and 9): This option provides a comprehensive dataset from the Landsat 

2 imagery is available for users who prefer this data source. It is 

h spatial resolution and frequent revisits, making it suitable for 

 

Google Earth Engine View of User Interface with selecting any area by using 

Spectral Indices Interface (earthengine.app) 



 

Figure 6.4 Google Earth Engine View of User Interface with GEE Repository URL 

available at 

The versatility of these options ensures that users can make informed choices based on the 

specific objectives of their analysis. Whether they are monitoring change

fields, assessing land cover changes, or studying the effects of land use changes on 

vegetation health, the Spectral Indices Interface provides the tools needed to perform 

detailed and comprehensive analysis.
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Google Earth Engine View of User Interface with GEE Repository URL 

available at Spectral Indices Interface (earthengine.app)

The versatility of these options ensures that users can make informed choices based on the 

specific objectives of their analysis. Whether they are monitoring change

fields, assessing land cover changes, or studying the effects of land use changes on 

vegetation health, the Spectral Indices Interface provides the tools needed to perform 

detailed and comprehensive analysis. 

 

Google Earth Engine View of User Interface with GEE Repository URL 

Spectral Indices Interface (earthengine.app) 

The versatility of these options ensures that users can make informed choices based on the 

specific objectives of their analysis. Whether they are monitoring changes in agricultural 

fields, assessing land cover changes, or studying the effects of land use changes on 

vegetation health, the Spectral Indices Interface provides the tools needed to perform 
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Furthermore, the Spectral Indices Interface is adaptable. While it does not require 

additional software installations, users with programming knowledge can modify or 

incorporate code into Spectral Indices Interface for more advanced or specialized analysis. 

This adaptability allows researchers and analysts to extend the functionality of the interface 

to meet their unique research requirements. 

In summary, the Spectral Indices Interface is a valuable resource for researchers, 

environmental scientists, and land managers. It simplifies the process of estimating and 

visualizing Vegetation Indices for user-defined regions, and it leverages the power of the 

Google Earth Engine for efficient data processing. By accommodating various satellite 

sources and offering adaptability through programming, the interface ensures that users can 

effectively and comprehensively monitor changes in vegetation, land cover, and water 

resources, supporting a wide range of applications in environmental monitoring and 

research. 

6.7 Conclusion:  

This chapter has delved into the design of a user-friendly interface for processing and 

analyzing satellite imagery data from Landsat 7, Landsat 8, Landsat 9, and Sentinel-2 

satellites. The primary goal of this interface is to compute the mean and standard deviation 

of various vegetation indices, namely NDVI, ARVI, EVI 2, NDWI, and SAVI. The user is 

provided with two distinct options for data selection – they can either upload their own 

repository of satellite imagery or define an area of interest using a polygon. The 

calculations are performed within the Google Earth Engine environment, ensuring 

efficiency and scalability for handling large-scale datasets. 
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This user interface serves as a valuable tool for researchers, environmental scientists, and 

land managers by simplifying the process of obtaining critical information about vegetation 

health and water resources from satellite imagery. It empowers users to access and process 

data from multiple satellite sources, enabling the assessment of trends and changes in 

vegetation cover, health, and water distribution over time. 

The ability to compute the mean and standard deviation of various vegetation indices 

facilitates a comprehensive analysis of the chosen regions, offering insights into vegetation 

dynamics, land cover alterations, and the impact of environmental factors. The interface's 

flexibility allows users to tailor their analysis to their specific research needs, whether it be 

related to agriculture, forestry, ecosystem monitoring, land use change detection, or 

environmental impact assessments. 

Furthermore, the integration with Google Earth Engine ensures the efficiency, scalability, 

and accessibility of data processing and analysis. This is particularly important in the 

context of modern remote sensing, where vast datasets are generated and quick analysis is 

essential for informed decision-making. 

As we move forward in our exploration of remote sensing and environmental monitoring, 

this user interface will continue to be a valuable resource, aiding researchers and land 

managers in their efforts to understand and address the complex challenges related to 

vegetation health, land use changes, and water resource management. The ability to harness 

the power of Earth observation data and compute vegetation indices' statistics with ease is a 

significant step towards a more sustainable and data-driven approach to environmental 

stewardship. 
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Chapter 7 

Conclusion & Future Scope 

7.1 Conclusion:  

In conclusion, the estimation of changes in land use/land cover (LU/LC) mapping using 

AI/ML techniques over Google Earth Engine holds significant promise for improving the 

accuracy, efficiency, and reliability of environmental monitoring and land management. By 

leveraging the computational power and extensive data resources of Google Earth Engine, 

combined with advanced AI/ML algorithms, researchers can overcome the limitations of 

traditional methods and extract valuable insights from satellite imagery. 

The integration of AI/ML techniques with Google Earth Engine enables more accurate and 

robust LU/LC mapping by utilizing the learning capabilities of AI models to capture 

complex patterns and relationships in the data. Through the classification of digital 

signatures derived from satellite imagery, AI/ML models can effectively differentiate 

between different land cover types, enhancing the accuracy of LU/LC mapping and change 

detection. 

The research questions proposed in this context address the key challenges and areas of 

focus for this field, including accuracy improvement, change detection, digital signature 

classification, efficiency, scalability, and the practical implementation of AI/ML techniques 

over Google Earth Engine. 

By testing the hypotheses outlined, researchers can evaluate the effectiveness and 

performance of AI/ML-based approaches for LU/LC mapping and change detection, 
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comparing them with traditional methods. Additionally, addressing the limitations and 

challenges associated with these techniques is crucial to ensure their practical applicability. 

Overall, the research in this field aims to advance the accuracy, efficiency, and reliability of 

LU/LC mapping, providing valuable information for environmental monitoring, land 

management, and decision-making processes. By leveraging AI/ML techniques and the 

capabilities of Google Earth Engine, we can gain a deeper understanding of our changing 

environment and contribute to more informed and sustainable land management practices. 

In our research, we embarked on a journey to estimate and analyze changes in land 

use and land cover (LU/LC) by leveraging advanced machine learning (ML) and artificial 

intelligence (AI) techniques over Google Earth Engine. The culmination of this study 

reveals a multifaceted exploration into the intricacies of LU/LC mapping, including the 

selection of classification algorithms and datasets, regional case studies in Dehradun, 

Sikkim, and Ernakulam, and the development of a user-friendly interface for LU/LC 

change detection using various indices. This extensive investigation has yielded valuable 

insights and implications across various domains, ranging from environmental monitoring 

to sustainable land management and disaster mitigation. 

The journey began with a thorough examination and comparison of classification 

algorithms and datasets. This chapter provided an essential foundation for the subsequent 

research, as it allowed us to make informed decisions regarding the tools and data sources 

that would be most effective for our analysis. We discussed various ML and AI techniques, 

such as Support Vector Machines (SVM), Random Forest, CART (Classification & 

Regression Tree) and GTB (Gradient Tree Boosting) each offering distinct advantages and 

limitations. 
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Our analysis also extended to the selection of datasets, such as Sentinel-2 and 

Landsat, , where we considered factors like spatial and temporal resolution, spectral bands, 

and cloud cover percentages. The combination of the right algorithms and datasets was 

crucial for the success of the subsequent chapters. 

The insights from this chapter revealed the dynamic landscape of classification 

algorithms and the vital role played by data selection in the context of LU/LC mapping. 

These considerations are essential for researchers and practitioners in the field, emphasizing 

the need for a tailored approach based on the specific objectives of each study. 

Chapter three focused on the application of AI and ML techniques to estimate and 

analyze land cover changes within the Dehradun area. The results of this analysis provided 

a comprehensive understanding of the changing land use patterns in this region, offering 

critical insights into urbanization and shifts in agricultural practices. 

The application of classification algorithms, as described in the initial chapter, 

played a pivotal role in identifying and quantifying changes in urban and agricultural 

landscapes. The findings highlighted the extent of urban expansion and its associated 

impacts on land cover, as well as the evolving agricultural dynamics that are integral to the 

region's economy. 

The information gleaned from this chapter has far-reaching implications for urban 

planning, agricultural policy, and environmental management in the Dehradun area. It 

underscores the importance of using advanced technology to monitor and assess land cover 

changes, particularly in regions experiencing rapid transformation. 
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Chapter four extended the research to the forested regions of Sikkim, a critical 

ecological zone. Here, we applied AI and ML algorithms to detect and classify changes in 

forest cover over long period of time. This chapter enabled us to assess the conservation 

status and ecological health of Sikkim's forests, which are vital for biodiversity and 

environmental balance. 

The unique challenges of working in forested areas were addressed, including the 

complexities of canopy cover and the intricate ecological interactions within these 

ecosystems. The use of multi-spectral and radar imagery proved invaluable for accurate 

forest cover mapping. 

The insights from this chapter contribute to sustainable forest management and biodiversity 

conservation. By understanding the dynamics of forest cover changes, we can formulate 

better-informed policies for preserving the delicate ecosystems of Sikkim and other 

forested regions worldwide. 

Chapter five expanded our focus to the impact of fire incidents on forest cover 

within the Ernakulam area. Using AI and ML techniques, we analyzed satellite data to 

identify fire-affected regions and assessed the extent of damage caused by these incidents. 

The detection of fire-affected areas is pivotal in understanding the ecological and 

environmental repercussions of such events. The methodologies discussed in this chapter, 

including the use of thermal bands, spectral indices, and fire radiative power (FRP), enable 

us to pinpoint the effects of fire on forest cover in very short period of time. 

The findings of this chapter are of utmost significance for fire prevention and 

ecological restoration efforts. By understanding the extent and impact of forest fires, we 
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can better equip ourselves to mitigate future disasters and support ecosystems in their 

recovery. 

The final chapter introduced a user-friendly interface developed to visualize and 

access the detected LU/LC changes across the studied regions. This interface serves as a 

practical tool for researchers, policymakers, and the general public, allowing them to 

explore and analyze LU/LC changes using various indices, including the Normalized 

Difference Vegetation Index (NDVI)[118], Normalized Difference Water Index (NDWI), 

and Enhanced Vegetation Index (EVI). 

The development of this interface highlights the significance of effectively 

communicating research findings to a broader audience. By providing a user-friendly tool, 

we bridge the gap between advanced AI/ML techniques and practical decision-making. 

This interface can support stakeholders in making informed choices related to land 

management, environmental conservation, and disaster response. 

Overall, this research project underscores the importance of harnessing AI and ML 

techniques for the estimation and analysis of LU/LC changes. By leveraging Google Earth 

Engine, we have been able to explore dynamic landscapes, from urban areas to forested 

regions and disaster-prone zones. The insights gained are invaluable for regional planning, 

ecological conservation, disaster management, and informed decision-making. 

In conclusion, this research project represents a significant contribution to the field 

of geospatial analysis and land cover mapping. The findings emphasize the power of 

advanced technology in understanding and managing dynamic landscapes, and they call for 

continued innovation and research in the realm of AI and ML applied to Earth observation 
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data. As technology and data availability continue to advance, the possibilities for 

monitoring and managing our changing world become even more promising. 

7.2 Future Scope :  

The research conducted on the "Estimation of Change in LU/LC Mapping with 

Classification of Digital Signature using AI/ML Techniques over Google Earth Engine" has 

laid a strong foundation for advancing the field of geospatial analysis and environmental 

monitoring. This comprehensive study explored various aspects, including classification 

algorithms, data sets, regional case studies, and the development of a user interface. As 

technology continues to evolve, new opportunities and challenges arise, offering a wide 

range of future research possibilities and avenues for expansion. This section outlines an 

extensive future scope that can guide researchers, policymakers, and practitioners in further 

advancing the field. 

7.2.1 Hyper-Resolution Mapping: 

   The study primarily worked with medium to high-resolution imagery. Future research can 

delve into hyper-resolution mapping, utilizing imagery from drones, unmanned aerial 

vehicles (UAVs), or high-resolution satellites like WorldView-3 and WorldView-4. Hyper-

resolution mapping allows for more detailed and accurate monitoring of land cover changes 

at a smaller scale. This can be particularly valuable in urban planning, agriculture, and 

ecosystem monitoring. 

 

7.2.2 Uncertainty and Validation Metrics: 
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   There is a growing need to quantify the uncertainty associated with AI/ML-based LU/LC 

mapping. Future research can focus on developing robust uncertainty estimation methods 

and standardized validation metrics to assess the accuracy of classification models. This is 

essential for building trust in AI/ML-derived results and making informed decisions based 

on these outputs. 

7.2.3 User-Friendly Interfaces and Decision Support Systems: 

   The development of user-friendly interfaces, as presented in this study, can be extended 

to include advanced features, such as augmented reality (AR) and virtual reality (VR) for 

immersive exploration and scenario testing. Additionally, decision support systems that 

integrate AI/ML-based LU/LC mapping into the decision-making process can be further 

refined and customized for specific applications. 

7.2.4 Environmental Justice and Equity Considerations: 

Future research can address environmental justice and equity issues related to LU/LC 

changes. Researchers can explore how AI/ML can be used to identify and mitigate 

disparities in land use decisions and their impacts on marginalized communities. 

7.2.5 Case Studies in Specific Domains: 

   Focusing on specific domains, such as agriculture, water resources, urban planning, or 

conservation, can provide in-depth insights into the unique challenges and opportunities 

associated with AI/ML-based LU/LC mapping in those areas. Case studies can inform 

tailored solutions and strategies. 

In conclusion, the future of LU/LC mapping with AI/ML techniques over Google 

Earth Engine is promising, with a wealth of opportunities for innovation and development. 

The continuous evolution of technology, data availability, and environmental challenges 
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demands ongoing research and adaptation. Researchers, policymakers, and practitioners 

should remain agile and open to exploring these future research directions to address the 

complex environmental and land management issues of our time. The potential benefits, in 

terms of improved environmental conservation, sustainable land use, and data-driven 

decision-making, are substantial and can contribute significantly to addressing global 

challenges. 
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