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Preface

The fast development of 5G mobile communication systems has created a need for better

communication solutions. Hybrid radio frequency (RF) / visible light communication

(VLC) systems, which combine visible light and RF based technologies, offer a promising

solution. These systems use the unique, non-overlapping spectrums of both technologies

to improve data speeds and reliability, especially in changing environments with physical

obstacles. However, managing resources in these hybrid systems is difficult because of the

network’s dynamic nature and the complexity of optimizing bandwidth, user associations,

and power distribution.

This thesis explores improved deep reinforcement learning (DRL) methods for resource

allocation in hybrid RF/VLC communication systems. VLC has a standardized subset

called as light fidelity (LiFi) like RF has wireless fidelity (WiFi). Hence, the hybrid system

formed is also known as hybrid WiFi/LiFi systems. We first propose a deep-Q-network

(DQN) and transfer learning approach that enhances throughput in hybrid RF/VLC net-

works by adapting to changing network conditions and new mobile users entering into the

indoor environment. Simulations reveal that this approach performs better than conven-

tional optimization algorithms in maximizing data rates with fewer number of iterations

with the help of transfer learning.

We extend the approach to dynamic hybrid networks that combine RF and LiFi. RF pro-

vides wide coverage, while LiFi offers high-speed data transmission. Tomanage resources

in real-world scenarios with moving users and signal blockages, we use a model-free DRL

technique named as deep deterministic policy gradient (DDPG). In this method, DRL



agent interacts directly with the environment to improve resource usage and network per-

formancewith the help of continuous state and action spaces. As a result, it achieves higher

total data rates and better transmit power efficiency compared to traditional methods.

The last part of the thesis investigates the effect of random orientation of user equipment

(UEs) on VLC, that is caused by dynamism of the users. It shows that combining VLC

with RF ensures reliable connectivity across different network environments. It introduces

two on-policy DRL methods advantage actor-critic (A2C) and proximal policy optimiza-

tion (PPO) to improve resource allocation and load balancing in large, dynamic hybrid

RF/VLC systems. Simulations reveal that A2C and PPO outperform existing methods,

leading to significant improvements in data rates and overall system performance.

This thesis focuses on creating an efficient hybrid RF/VLC communication systems for 5G

and future networks. It introduces new ideas on using DRLmethods to optimize resources

in real-time, even in complex scenarios.

xx



Chapter 1

Introduction

1.1 Motivations

In recent years, wireless internet data traffic has seen phenomenal growth across the radio

frequency (RF) spectrum. As reported by Federal Communications Commission (FCC)

in 2010, the total available licensed spectrum is less than the required spectrum to ac-

commodate such huge growth in internet users leading to a serious spectrum scarcity [1].

Further, the growth is estimated to fully saturate the RF spectrum by 2035 [2], highlighting

significant future challenges. As per the recent Cisco report [3], 66% of the global popu-

lation are having internet access with nearly 30 billion connections. As shown in Fig. 1.1,

approximately 2 billion users are using 5G communication networks. As per the recent

mobility report of Ericsson, 80% of mobile data traffic will be from 5G communication

devices by the end of 2030 [4]. Handling such upsurging amount of mobile data traffic

on the scarce RF spectrum is highly challenging. Hence, exploration of alternatives to RF

communication becomes significant. Optical wireless communication (OWC) has been

identified as an efficient alternative to RF communication.

OWC uses light signals for performing communications. Employing light for communi-

cation is a historical concept, with OWC dating back over three centuries. Early methods

such as ship flags, semaphore, and fire beacons laid the groundwork for it. Another primi-
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Figure 1.1: Global 5G users

tive technique involved reflecting sunlight using mirrors [5]. Alexander Graham Bell and

Sumner Trainer pioneered the photophone in 1880, a revolutionary system of free space

communication based on light. This groundbreaking invention enabled the transmission

of sound through a beam of light [6]. Komine et al. [7] presented the visible light as

a technology for wireless communication. Fig. 1.2 shows the visible light range in the

electromagnetic spectrum [8].

Figure 1.2: Visible light range in electromagnetic spectrum

The surge in demand for high data rate and license-free spectrum applications has

prompted numerous researchers to explore visible light communication (VLC), a subset of

OWC. VLC, sometimes also referred to as light fidelity (LiFi), is a broader term referring

to any communication using visible light. It can be used for indoor position, and commu-

nication and follows IEEE 802.15.7 standards [9]. LiFi is a subclass of VLC only used

for high speed internet access instead of WiFi and follows IEEE 802.11 standards [10].

It appears as a promising solution for indoor connectivity [7, 11]. However, standalone

VLC network deployment is impractical due to its susceptibility to blockages. Thus, its

co-deployment with RF network has been proposed, which creates a hybrid RF/VLC sys-

2
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tem.

Hybrid RF/VLC is a type of heterogenous networks (HetNets) [12] that can provide higher

data rates with broader coverage areas. HetNets are multi-tier networks in which several

small cells spatially co-exist using the same spectrum bands [12, 13]. As a specialized

class of HetNets, hybrid RF/VLC can make use of the large capacity of VLC links and

the uninterrupted connectivity of RF links [14]. Thus, they enhance user rates and mo-

bility on the one hand and optimize system’s overall power and bandwidth usage on the

other [15]. Synergy of both the technologies provides better data rates with uninterrupted

communication [16]. Hybrid RF/VLC systems has emerged as a viable alternative within

indoor environments. It has garnered considerable research attention due to its ability to

provide traffic decongestion in densely populated RF environments. Apart from cumulat-

ing the advantages of both RF and VLC in a single network, hybrid RF/VLC also enhances

mobility and energy efficiency in communications.

Similar to the joint resource allocation and association optimization in HetNets [17, 18,

19], optimal resource allocation and association optimization in hybrid RF/VLC systems

remains a key research topic. In [20], the subject of resource allocation that maximizes

feasible sum-rates in hybrid RF/VLC has attracted a significant attention. The downlink

bandwidth and transmission power assigned to the access points (APs) for transmission

of data, along with the affiliation of user equipments (UEs) with the APs to receive the

downlink data, have a substantial impact on the system’s possible sum-rate.

Optimizing resource allocation and association in hybrid RF/VLC involves non-concavity

and integer optimization [21]. To address these dual challenges, several conventional

optimization algorithms have been proposed in the existing literature [22, 20, 23, 24, 25,

26]. However, conventional optimization mechanisms often rely on assuming values for

at least one of the optimization parameters and finding the best values for the remaining

parameters [27]. Notably, as the optimization parameters jointly impact the data rate, their

joint optimization must be free of any presumptions on their values. The assignment of

downlink power and bandwidth has a direct impact on signal-to-interference-plus-noise-

3
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ratio (SINR), and vice-versa. Presuming a value for the downlink bandwidth, transmission

power, or association parameter results to suboptimal outcomes. A robust solution can be

obtained by the inclusion of the interplay between each optimization parameter and the

objective function in a comprehensive joint optimization problem.

To address above issues, deep learning, a flagship of machine learning, has been found to

have high potential for resource optimization in hybrid RF/VLC. It can solve the optimiza-

tion problem with higher efficiency and accuracy [17]. Instead of optimizing block-by-

block from transmitter to receiver, as done by current technologies, deep learning facili-

tates the optimization of the whole system, incorporating the interplay between different

optimization parameters [28]. When variables have a strong inter-relation, model-based

mechanisms severely suffer as they involve optimization of one parameter at the cost of

an other [27]. As deep learning is dependent on a moment-to-moment update, it can out-

perform sequential optimization methods.

Investigations on the application of deep learning and deep reinforcement learning (DRL)

methods for optimal resource allocation in hybrid RF/VLC have been extensively carried

out in [17, 29, 30, 31]. In [17], the authors have used deep Q-network (DQN) learning to

solve the joint optimization problem of association parameter, bandwidth, and transmis-

sion power. Wang et al. in [29] use deep learning for seamless handover and increased

downlink data rate in an ultra-dense deployment of VLC APs. Deep learning based solu-

tions have been used against the heuristic methods to improve the stability and optimize

the transmit power [30]. Along with transmission power, Yifei Wei et al. in [32] also

considered user scheduling using deep learning techniques for hybrid energy supply. It

considers renewable energy harvesting technique along with the conventional. Mohamad

Azizi et al. in [33] uses deep learning mechanisms for enhanced energy efficiency (EE)

and quality of service (QoS). Helin Yang et al. in [34] proposed deep learning based EE

uplink and downlink resource management in HetNets. Parvez Shaik et al. in [35] consid-

ered outage probability and human blockers consideration in deep learning based hybrid

RF/VLC dynamic communication systems. Liqiang Wang et al. in [29] proposed deep

learning based seamless handover protocol in for hybrid network architecture. Duc M. T.
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Hoang et al. in [36] and Danya A. Saifaldeen et al. in [37] uses deep learning based mech-

anisms for enhanced secrecy capacity and reliable data rate in hybrid VLC communication

systems.

This thesis work is focused on joint optimization of the downlink bandwidth, transmission

power of the APs, and the integer association parameter for achieving maximum achiev-

able sum-rate for UEs. We have used state-of-the-art deep learning techniques to achieve

this goal.

1.2 Contributions and Thesis Organisation

The thesis has been organized as follows:

• Chapter 2: Related works and Literature Review - A comprehensive review of ex-

isting research on hybrid RF/VLC systems and deep learning applications in com-

munication systems is presented in this chapter. The review covers traditional opti-

mization methods, recent developments in deep learning based approaches, and the

evolution of hybrid RF/VLC systems. Gaps in the current literature are identified,

highlighting the need for advanced, model-free DRL techniques to tackle resource

allocation problems in dynamic and large-scale networks along with transfer learn-

ing.

• Chapter 3: Transfer Learning in Dynamic hybridWiFi/ LiFi - This chapter presents

a DQN combined with transfer learning based approach to optimize resource allo-

cation in hybrid WiFi/LiFi systems. Here, the wireless fidelity (WiFi) network has

been used as the RF network. The chapter explores the challenges in dynamic en-

vironments where users frequently enter and exit the network, requiring adaptive

optimization of bandwidth, power, and user association. The proposed DQN-based

method addresses these challenges by leveraging transfer learning to quickly adapt

to new users without retraining, improving overall network throughput. Simula-

tions validate the algorithm’s efficiency, showing superior performance in dynamic

conditions compared to existing optimization approaches.
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• Chapter 4: Actor-critic deep deterministic policy gradient (DDPG) in hybrid

RF/LiFi systems - This chapter focuses on a model-free DRL approach namely

DDPG for efficient resource allocation in hybrid RF/LiFi networks. The method

does not rely on predefined models, instead it learns from real-world interactions

within the environment. It effectively handles challenges such as blockages and

user mobility by dynamically optimizing resource allocation. The chapter high-

lights how the DRL model significantly improves network performance, enhancing

data rates and power efficiency over traditional techniques, as demonstrated through

simulations.

• Chapter 5: Advantage actor-critic (A2C) and proximal policy optimization (PPO)

with random orientation in hybrid RF/VLC - This chapter investigates advanced on-

policy DRL algorithms for resource allocation and load balancing including random

orientation of UEs in hybrid RF/VLC systems. Two schemes namely A2C and PPO

are developed to handle randomly oriented UEs and their demands of dynamic, and

large scale networks. The chapter explores how these algorithms optimize data rates

and improve load balancing efficiency, offering substantial performance gains over

existing solutions. Simulation results demonstrate the superiority of these meth-

ods in achieving higher data rates and better resource allocation compared to other

reinforcement learning techniques.

• Chapter 6: Conclusion and Future scope - This chapter summarizes the contribu-

tions of the thesis, emphasizing the impact of DRL techniques on resource allocation

and load balancing in hybrid communication systems. It discusses the key findings,

the improvements over traditional methods, and potential future directions for re-

search in this field.

6



Chapter 2

Related works and Literature Review

In this chapter, a detailed literature review has been performed on the existing researches

on VLC, hybrid RF/VLC, and deep learning approaches used in communications. From

past few years, VLC has been significant area of research. The development and usage

of light emitting diodes (LEDs) over the incandescent bulbs have given tremendous boost

to the area. LED lights offer several advantages over incandescent and fluorescent lights

in terms of energy efficiency, light density, longer lifetime span, reliability, low power

consumption, and minimal heat generation [38]. LEDs are widely used in common life for

general illumination, automotive headlights, traffic signals, displays, and smart lighting

applications like automotive light management and VLC [39]. Komine et al. [7] from

their laboratory proposed indoor VLC using white LED. They have shown the usage of

visible white light as a medium for communication. Using LEDs that serve as a transmitter

that emits both light and information signals to users serves the dual purpose. In a typical

VLC system the receiver is equipped with a photodetector (PD) to receive the light signal

and convert it into an electrical signal. The electrical signal is further processed to retrieve

the transmitted data.



CHAPTER 2. RELATED WORKS AND LITERATURE REVIEW

2.1 Overview

VLC is a form of short-range OWC that utilizes the visible light spectrum, ranging from

380 nm to 780 nm [8, 9]. VLCworks bymodulating the intensity of light sources known as

intensity modulation/direct detection (IM/DD) technique, at speeds faster than the human

eye can detect [40]. VLC uses dimming and flickering to transmit data which is invisible

to eyes. Flicker refers to the variation in light brightness, which can lead to noticeable

and harmful physiological effects in humans. Generally, frequency greater than 200Hz is

considered safe [41]. Another important consideration is dimming support as it is used

for transmission of data. As dimming leads to power saving but communication need to

be maintained. The characterization of deterministic and stochastic VLC channels has

been primarily investigated through simulation-based studies in various environments,

including indoor settings [42, 43, 44], underground mines [45], and outdoor areas [46] .

Furthermore, numerous collaborative initiatives were launched worldwide, including the

Japan Electronics and Information Technology Industries Association (JEITA) set stan-

dards for a “visible light ID system” in 2007. The following year, in 2008, theVisible Light

Communications Consortium (VLCC) released a Specification Standard. Concurrently,

in Europe, the Home Gigabit Access project (OMEGA) is advancing the development of

VLC for home networks [47].

In indoor environments, a VLC cell typically covers only a few square meters due to the

inherent properties of light. Generally, rooms can have multiple light sources, allowing

for high spatial spectral efficiency with VLC. However, despite the dense deployment of

APs, VLC does not offer uniform coverage because optical signals are prone to block-

ages. When light beams are obstructed, the data rate decreases due to low optical channel

gain. Studies have shown that while VLC networks can deliver very high data rates, their

outage rate performance in multiuser environments can be significantly low [16]. VLC is

secure, license-free, and have no RF interference. They also have a huge bandwidth po-

tential compare to RF counterparts [48]. However, VLC experiences issues when it goes

non-line-of-sight (NLOS). Unlike RF networks, it operates effectively only when there is
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a clear line-of-sight (LOS) between the transmitter and receiver. Therefore, standalone

deployment of VLC may lead to obstruction in communication. To maintain ubiquitous

connectivity for UEs, integrating an RF AP with the VLC network enhances coverage,

maintain connectivity and boosts overall system capacity[49].

2.1.1 Hybrid RF/VLC

Hybrid RF/VLC system is consider to be more energy efficient than the standalone.

Kashef et al. in [50], have discussed about the energy efficient hybrid RF/VLC systems in

terms of bandwidth and power allocation in HetNets. Khreishah et al. in [51] have shown

that the hybrid RF/VLC is more energy efficient particularly in terms of power than the

standalone. Basnayaka et al. in [16] have shown that hybrid RF/VLC network can enhance

both the average and outage data rate performance. Since this system operates on non-

overlapping spectra, hence can harness the advantages of both the technologies. RF sys-

tems offer widespread coverage, ensuring consistent throughput across various locations.

This integration can deliver a combined system throughput that surpasses the standalone

VLC or RF networks can achieve, without causing mutual interference. Hence, combin-

ing advantages of both the network and forming a hybrid RF/VLC network which can

significantly enhance both system’s throughput and user experience. A hybrid RF/VLC

systems belong to HetNets.

2.1.2 HetNets

One of the essential technologies within the diverse range of HetNets technologies is VLC

[52][53]. HetNets have been proposed to integrate different wireless technologies, en-

hancing overall system capacity [54]. With huge surge in data demands, HetNets have

been suggested to address these demands and are widely seen as a practical solution to

accommodate this exponential growth [55, 56, 54]. These enhancements are possible

due to the diversity in fading channels, propagation losses, and available resources across

various networks. HetNets are also known as multi-tier networks. In these type of net-

works, assignment of APs is of utmost importance. In [55], the authors have introduced
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user association to the AP with minimum distance and maximum SINR based condition.

They have shown that the system achieves this with optimal balance load performance

[57]. However, to realize these benefits, the critical challenge lies in developing resource

allocation algorithms that effectively distribute power and bandwidth among HetNets to

meet diverse service requirements [50]. Generally, the combined optimization of resource

allocation and association continues to be a key research area in HetNets [14, 13, 58, 59].

2.1.3 Resource Allocation

Similarly, resource allocation is an important research area in hybrid RF/VLC systems.

The affiliation of UEs with APs for downlink data receipt, as well as the allocation of

downlink bandwidth and transmission power to APs for data transmission, all have a sub-

stantial impact on the system’s possible sum-rate. As a result, the topic of optimal resource

allocation to maximise the possible sum-rate in hybrid RF/VLC systems has received sig-

nificant scientific interest [55, 60, 21, 61, 50]. Several studies have addressed the resource

allocation in hybrid RF/VLC systems, targeting the various objectives such as sum-rate

maximization [20, 62, 31, 18, 19] , spectral efficiency [55, 63] , power consumption [64,

65], and energy efficiency [66, 67]. Rui Jiang et al. in [27] have shown joint optimization

of user association and power allocation for the sum-rate maximization and improved sys-

tem performance in a cell-free VLC network. Mohanad Obeed et al. in [60] proposed an

iterative algorithm for joint optimization of load balancing and allocation of power with

focus on maximizing the achievable data rate. The common challenge faced in these joint

optimization problem is non-concavity [21].

2.1.4 Non-concavity

The challenge of non-concavity in the downlink resource allocation problem is persis-

tent difficulty faced in these studies, particularly when involving the joint optimization of

downlink bandwidth, transmission power, and the association parameter. Since the asso-

ciation of UEs to APs may depend on various conditions such as minimum distance [55],

maximum SINR [17], maximum power [68] depending upon the optimization technique
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used. Typically, this issue is addressed by presuming values for at least one of these param-

eters, then using standard convex optimization techniques to determine the optimal values

for the remaining parameters. However, presuming values for the association parame-

ter, downlink bandwidth, or APs’ transmit power might not be the optimal approach for

maximizing the system’s potential sum-rate. A robust solution can be achieved through

a comprehensive joint optimization process that considers the interdependence of each

parameter and its effect on the objective function. A combined optimization of associa-

tion parameter, downlink bandwidth, and transmission power without any presumptions is

necessary. Since presuming the value may not provide the optimal robust solution. There-

fore, to get optimal solution, exploration of machine learning and deep learning techniques

have been done in several studies.

2.1.5 Learning based Joint Optimization

Learning based solutions are capable of providing the robust solution for such kind of

joint optimization problems. Given the challenge of non-concavity of the optimization

problem, which compromises precision and accuracy, hence limiting the scope. Several

studies have explored the machine learning and deep learning techniques in application

of hybrid RF/VLC systems. Recently, machine learning techniques have been introduced

for channel modeling to address the high complexity and site-specific constraints of deter-

ministic methods, as well as the accuracy limitations inherent in stochastic models [69].

Machine learning based channel modeling seeks to create accurate, low-complexity mod-

els for complex channels by directly learning data patterns without relying on assumed

analytical expressions. Additionally, machine learning models differentiate between sce-

narios by using physical parameters specific to each scenario as inputs [69, 70]. Deep

learning techniques have demonstrated significant potential in handling a variety of in-

telligent tasks. In recent years, the fields of machine learning and, more specifically,

deep learning have experienced tremendous growth, with their applications now spanning

nearly every industry and research domain.

Reinforcement learning [71] has emerged as a crucial area of research in machine learn-
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ing, significantly influencing the development of Artificial Intelligence (AI) over the past

two decades. In reinforcement learning, an agent makes periodic decisions, observes the

outcomes, and adjusts its strategy to achieve the optimal policy. Despite its proven con-

vergence, this learning process can be time-consuming due to the need for extensive ex-

ploration and system understanding, making it impractical for large-scale networks. Con-

sequently, the practical applications of reinforcement learning have been limited.

Recently, the advent of deep learning [72] has introduced a breakthrough technique that

addresses these limitations. This advancement has led to the development of DRL, which

leverages the power of Deep Neural Networks (DNNs) to enhance the learning process,

improving both the speed and performance of reinforcement learning algorithms. As a

result, DRL has been widely adopted in various practical applications, including robotics,

computer vision, speech recognition, and natural language processing. In the fields of

communications and networking, DRL has recently emerged as a powerful tool to tackle

various issues and challenges. Specifically, contemporary networks like the Internet of

Things (IoT), HetNets, and Unmanned Aerial Vehicle (UAV) networks are becoming in-

creasingly decentralized, ad-hoc, and autonomous [73]. DRL is recognized as an efficient

learning mechanism. It operates through interaction with the environment, requiring min-

imal prior information. As an online learning method, DRL has been extensively studied

in the field of AI [74].

Q-learning is one of the most popular reinforcement learning technique, initially proposed

in [75]. The convergence theorem for Q-learning was later established in [76]. In [77],

an autonomous Q-learning algorithm was introduced for HetNets to optimize resource al-

location for device-to-device (D2D) communication. This approach formulates a utility

function as the difference between achievable throughput and power consumption cost,

modeled as a stochastic non-cooperative game. Here, each D2D pair acts as a player and

learning agent, tasked with determining its optimal strategy. Additionally, in [78], an on-

line reinforcement learning approach was utilized to address the association problem in

vehicular networks, leveraging the regularities in the network features. Ghadimi et al.

introduced a reinforcement learning approach for rate adaptation in cellular networks in

12



CHAPTER 2. RELATED WORKS AND LITERATURE REVIEW

[79]. However, it is important to note that achieving an optimal solution using the Q-

learning method becomes challenging when the state and action vectors in the joint opti-

mization problem are large. In this context, deep learning [80] has emerged as a promising

technique for addressing issues involving large state and action vectors. Recently, deep

learning-based methods have been applied to various areas, including dynamic channel

access [81], power allocation [82], mobile offloading [83], cloud radio access networks

[84], interference management [85], and mobile edge computing and caching [86]. We

will first explore the usability of deep learning in communication networks.

The integration of machine intelligence into future mobile communication networks is

garnering significant research interest. Deep learning, a flagship of machine learning, is

particularly captivating the attention of communication network researchers. Studies like

[87] and [88] have explored its potential to address challenges in the mobile network-

ing domain, encouraging the use of deep learning in 5G mobile communication systems,

which are predominantly HetNets. These systems generate highly heterogeneous data,

originating from various formats with complex correlations [89]. Traditional machine

learning tools struggle with these challenges due to their lack of performance improve-

ment with increased data [90] and their inability to handle high-dimensional state/action

spaces [80].

In contrast, deep learning thrives on big data, eliminating the need for domain expertise

and utilizing hierarchical feature extraction. Consequently, it has become a highly effec-

tive solution for addressing problems in communication networks, especially in HetNets.

A comprehensive applications of deep learning in communication systems are discussed

in following works such as authors in [91], discuss about deep learning for network cy-

bersecurity; in [92], which reviews approaches for network traffic control; in [93], which

presents methods for physical layer modulation, resource allocation, and network routing;

and [94], which explores emerging issues like edge caching and computing, multiple radio

access, and interference management.

A significant advantage of DRL is its ability to solve complex network optimization
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problems. This capability allows network controllers, such as base stations, to address

non-convex and intricate issues like joint user association, computation, and transmission

scheduling, achieving optimal solutions even without complete and accurate network in-

formation.
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Chapter 3

Transfer Learning in Dynamic Hybrid

WiFi/ LiFi

As discussed in the previous chapter, the demand of newer technologies for fifth generation

mobile communication systems has been continuously growing in the current arena. A

hybrid form of RF andVLChas emerged as a promising candidate to fulfill this demand. In

this chapter, we discuss standardized subsets of RF and VLC technologies, termed asWiFi

and LiFi, respectively. Such a system is thus termed as a hybridWiFi/LiFi communication

system. The joint optimization problem of bandwidth, user association parameter and

transmission power for sum-rate maximization in these hybrid systems is non-concave.

DQN learning based algorithms offer solution to non-concavity. However, existing DQN

learning based solutions are often restricted to static networks. They face complexity

issues in dynamic networks. In this chapter, we address the dynamic hybrid WiFi/LiFi

communication system with DQN transfer learning algorithm. Transfer learning is used

to gather information about a newly entering UE in the network, thereby improving the

overall throughput of the network. Simulations show that the proposed algorithms perform

well than the existing optimization algorithms in throughput maximization.
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3.1 Overview

The demand for wireless data has been increasing exponentially, particularly in education

and industry. As mentioned in Chapter 2, the present conventional WiFi communication

based technology may fail to fulfil the desirable data requirement in near future [8]. LiFi

can be a powerful supplement to conventional WiFi based systems. It uses the indoor

deployed LEDs for communication. The deployed LED lights are used for data transfer

using dimming of light. They provide various advantages like high data rate, lesser in-

terference, high energy efficiency and better security, unregulated bandwidth in visible

spectrum range, illumination and communication simultaneously [38]. However, certain

limitations like inefficiency of NLOS components prevent it’s stand-alone deployment

[8]. The proposal of hybrid WiFi/LiFi system has been found as a solution to the problem

[95, 96].

A typical hybridWiFi/LiFi is a merger ofWiFi and LiFi systems. The light sources present

in the indoor setup act as multiple LiFi APs. Generally, one or more WiFi APs are also

present. An UE present in the set up can connect to any of the APs. When connected

to a LiFi AP, it gets a high data rate. However, when LOS components are unavailable,

the minimum required signal-to-noise ratio (SNR) is not maintained. In this situation, it

gets connected to WiFi AP. In this way, both the networks compensate for the limitations

of each other. Further, practical hybrid WiFi/LiFi observe a continuous change in the

number of UEs in the set-up. For instance, consider an airport waiting area where UEs are

entering or exiting the room continuously. Such situations demand efficient handling of

the dynamism in the network, to quickly associate a newly entering UE with the AP that

is offering the highest data-rate to it.

Another significant issue in hybrid WiFi/LiFi is resource allocation. Resource allocation

primarily implies the allocation of bandwidth, transmission power, and association on the

AP-UE links. The parameters significantly affect the achievable sum-rate [62, 97, 98, 99,

42, 100, 101, 102]. A crucial issue encountered in these works is non-concavity of the

achievable sum-rate maximization problem. A common way of addressing this problem
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is by presuming values of one of the resource parameters. However, the problem becomes

more challenging and complex when new UEs are entering or leaving the system. Such

a system can be termed as a dynamic hybrid WiFi/LiFi system. The association of UEs

depends on SINR, which depends on bandwidth, transmission power and association pa-

rameter. Presuming a value for them significantly affects the system performance. Hence,

getting optimal solution without such presumptions is required.

To solve the above problem, we aim to jointly optimize the transmission power, bandwidth

and association parameter with DQN transfer learning to maximize achievable sum-rate

for a dynamic hybrid WiFi/LiFi systems.

3.1.1 DQN transfer learning

DQN learning was proposed by Mnih et al. in 2015 [80]. It is a combination of reinforce-

ment learning with DNN for Q-networks. Mnih et al. proposed DQN as an extension of

classical Q-networks that uses DNN without reinforcement learning [76]. Reinforcement

learning uses were limited to low-dimensional state spaces. However, DQN can learn

successfully from high-dimensional inputs using reinforcement learning. The other chal-

lenges faced in using reinforcement learning were instabilities due to correlations and di-

vergence due to non-linear function approximators in neural network. DQN provides two

key ideas to solve these challenges [103]. First, experience replay that randomizes data,

thereby removing correlations in the observation sequence and smoothing over changes

in the data distribution. Second, we used an iterative update that adjusts the Q-function

towards target values periodically, thereby reducing correlations with the target.

In reinforcement learning, an agent interacts with its environment. This interaction occurs

through a sequence of observations, actions, and rewards. The agent observes the environ-

ment to gather information. Based on these observations, it selects and performs actions.

These actions lead to certain outcomes, which the agent evaluates as rewards. The main

goal of the agent is to choose actions strategically. By doing so, it aims to maximize the

total reward it will receive over time.
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The notion of transfer learning in neural network evolved between 1970 to early 1980s.

In this method, a model created for one specific task is not discarded after completing that

task. Instead, the model is reused to perform another related task. The knowledge gained

from the initial model (first task) serves as a starting point for the second task. The first

work on transfer learning was published by Bozinovski et al. in 1976 [104]. It was also

termed as learning by learning, sequential learning, adaptive generalization, and lifelong

learning [104]. Subsequent researches in 1977 [105] and 1978 [106] have shown exper-

imental assessment of transfer learning. The authors in [105] and [106] mentioned two

types of transfer learning, namely positive transfer learning and negative transfer learning.

Positive transfer learning occurs when the first task helps the model learn the second task

more efficiently. In this case, the second task requires fewer iterations or a shorter train-

ing sequence to achieve the same level of performance. This happens when the two tasks

share similar features, allowing the model to generalize well. Since the model has already

learned a useful representation of the data, it does not need extensive retraining. Thus, it

is performed when the second task is showing shorter sequence for learning after the first

task. On the other hand, negative transfer learning happens when the first task makes it

harder for the model to learn the second task. This results in longer training sequences or

degraded performance. Negative transfer occurs when the tasks have different or conflict-

ing features, causing the model to overfit to irrelevant patterns from the first task. Thus it

is performed when the second task is showing longer sequence for learning after the first

task.

In 1981, research was performed for application of transfer learning in alphabets letter

recognition from computer terminals [107]. In 1985 [108], this work was extended for

modeling of supervised learning in neural network. As synaptic weights are not observ-

able in biological systems, they can be observed in neural network. Bozinovski et al. dis-

cussed supervised learning problem representation without representing synaptic weights

as primary concept. It was termed as teaching space. Multilayer neural network gained

interest in 1986with the publication of a book “ Parallel Distributed Processing ” by David

E. Rumelhart et al. [109]. Transfer learning regained research focus in early 1990s, when
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Pratt et al. [110] made additional developments to it by adding multi-task learning to it.

The most significant advantage of transfer learning is that it saves time and effort because

the model does not need to be built entirely from scratch for the new task [111]. The

previous task knowledge acts as a source to the new task or target, making it somewhat

analogous to human behavior. Human beings generally learn from their past experience

and apply that experiencewhile performing that same task or another related task in present

or future. Similarly, transfer learning uses neural network already trained for one task to

speed-up the training process for a new task. This approach with transfer of learning or

knowledge is widely used in modern DNN to improve learning efficiency.

The joint optimization and resource allocation in 5G and beyond systems are complex and

having large-scale links. Several researchers have explored transfer learning for resource

management in 5G wireless communication systems for making them faster, more secure

and energy efficient [112]. Wang et al. discuss about varied application of transfer learning

in wireless communication systems such as indoor wireless localization, APs switching

efficiency, spectrum allocation, etc [113]. Du et al. [43] uses WiFi with a knowledge

transfer approach to choose between the RF and LiFi networks in hybrid WiFi/LiFi sys-

tems. Yang et al. [114] proposed reinforcement learning based transfer learning for low

latency and high reliability in an energy efficient hybrid WiFi/LiFi systems.

3.2 Chapter Contributions

In this chapter, we aim to jointly optimize the transmission power, bandwidth and as-

sociation parameter with DQN transfer learning to maximize achievable sum-rate for a

dynamic hybridWiFi/LiFi systems. In the existing literature, DQN learning has been used

for static hybrid WiFi/LiFi system. However, DQN learning fails to perform optimally in

dynamic hybridWiFi/LiFi environment. First we consider a static hybridWiFi/LiFi set-up

with a fixed number of UEs and APs. The controlling unit (CU) of this system optimizes

the bandwidth on each of the AP-UE links, the transmit power of the AP and the associ-

ation parameter between the APs and the UEs with the help of DQN learning algorithm.
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However, when a new UE enters, the static system transforms into a dynamic system. To

optimize the bandwidth, transmit power and association parameter of this dynamic system,

the DQN learning information at the UE nearest to the newly entered UE is transferred to

the newly entering UE with the help of DQN transfer learning algorithm.

The main contributions made in this chapter can be enlisted as follows:

• Comprehensive assessment of the resource allocation problem: Addressing the joint

optimization problem comprehensively by incorporating the bandwidth, transmis-

sion power, and association parameter. The resource allocation problem for hybrid

WiFi/LiFi system is neither concave nor convex. DQN learning technique is applied

to solve this problem. The optimal solution is obtained with moment-to-moment

update and without modeling errors.

• Practicality of the scheme: We have considered the practicality of the system and

considered idle APs. Idle APs are APs which are not taking part in communication

due to hardware malfunctioning. The consideration of idle APs has been made in

SINR expression to make the system more comprehensive and practical.

• Dynamicity with transfer learning: DQN transfer learning has been introduced in

the system. When a newUE joins the set-up, it learns from the experience of already

existing UE. This makes the system more efficient in quick convergence, as the

newly entered UE requires 54% less iterations.

The rest of the chapter is organized as follows: Section 3.3 discuss the system model,

resource allocation algorithm for DQN based hybrid WiFi/LiFi system is discussed in

section 3.4. Results of simulation are shown in 3.5 and finally section 3.6 concludes the

chapter.

3.3 System Model

Fig. 3.1 shows the set-up considered for investigation. It has a single WiFi AP (shown

as RF AP in figure) and multiple LiFi APs (shown as VLC AP in figure) deployed on
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Figure 3.1: Hybrid WiFi/LiFi system

the ceiling of a room. The UEs are present on the floor. A newly entering UE is also

considered in the set-up. Consider the set of APs as D, where the APs are indexed as

d = 0, 1, 2, . . . , |D|. The WiFi AP is indexed as d = 0 while the LiFi APs are denoted

by indices d = 1, 2, . . . , |D| − 1. LiFi APs are light sources deployed in the room. The

set of UEs E indexed as e = 1, 2, . . . , |E| present in the room. The UEs are assumed at a

constant height h from the floor.

3.3.1 Channel Model for Light propagation

The propagation of light is modeled with a Lambertian law model [50, 115] as most of the

surfaces found in typical indoor set-ups like plaster walls and ceilings are ideal Lambertian

reflector. In a typical indoor set-ups, plaster walls and ceilings are present. These surfaces

provide excellent reflective properties for diffuse links. These diffused reflections from

different indoor surfaces are well approximated by ideal Lambertian reflector. Diffused
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links are the non-directed links that do not require any alignment between the transmitter

and receiver. These paths can be categorized as either LOS or NLOS. Typical LOS path

links requires direct path between transmitter and receiver. LOS links are unobstructed

paths and it gets highly affected by shadowing. However, NLOS components are obtained

from the diffused reflections from plaster walls, ceiling and other reflectors. As diffuse

links do not require any direct paths, they are more robust to shadowing [115, 116].

LiFi systems assume diffuse reflection. Diffused reflections come from multiple direc-

tions, hence cannot be accurately modeled by simple ray-tracing laws that assume per-

fect linear propagation. Simple ray optics does not consider wave-like behaviors such

as diffraction and interference, especially when encountering obstacles. Simple ray laws

are insufficient for LiFi because they neglect critical aspects such as diffuse reflection,

wavelength-specific behavior, wave phenomena, and real-world complexities such as

multi-path propagation and receiver properties [117].

Consider LiFi APs as transmitters and UEs equipped with PD as receivers, in an indoor

environment without reflectors. If the distance between the LiFi AP and UE is signifi-

cantly larger than the area of photodiode, the received irradiance will be nearly uniform

across the detector’s surface. Hence, all the signal energy will reach the UE almost si-

multaneously. Therefore, the impulse response for this system can be approximated as a

scaled and delayed Dirac delta function [115]. The LiFi APs transmit data to UEs on the

downlink. In this process, light propagation in LiFi is modeled using diffused reflection,

where an incident light ray on a surface is scattered at various angles.

The optical power of light after diffused reflection is described by the Lambertian law

[50]. According to this model, the LOS direct current (DC) channel gain CGv
de is given

as

CGv
de = (m + 1)Apdcosmϕde cosψdeTopt(ψde)g(ψde)

2πd2
de

, (3.1)

where Topt(ψde) is the optical receiver filter gain which is constant or unity within field-

of-view (FOV) of receiver, ϕde is the angle of incidence at UE e from AP d, ψde is the
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Figure 3.2: Representation of LOS and NLOS link in hybrid WiFi/LiFi system

angle of irradiance at AP d, dde is the Euclidean distance between the dth UE and the eth

AP, Apd is the area of photodiode, and g(ψde) is the concentrator gain given as

g(ψde) =


n2

sin2ψFOV
if 0 ≤ ψde ≤ ψFOV

0 if ψde >FOV,

(3.2)

ψFOV is the angle of receiver FOV of UE, the refractive index n is given as

n = speed of light in vaccum
speed of light in that optical material

, (3.3)

andm is the mode number of radiating lobe, also known as order of Lambertian radiation,

and is given as

m = − ln 2
ln cosψ1/2

, (3.4)
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Table 3.1: Important notations and their meanings

Notation Meaning
d Index of APs
e Index of UEs
k The interferer AP index
rde The achievable data rate between the dth AP and the eth UE
rd Downlink data rate of the dth AP
BLiFi
max Maximum BW allotted to LiFi AP

BWiFi
max Maximum BW allotted to WiFi AP

Pd Transmit power of the dth AP
Peff Total transmit power from an AP
D Set of APs
E Set of UEs
m Lambertian coefficient
ϕ Angle of incidence
ψ Angle of irradiance
CG(p) DC Channel gain after pth reflection
Apd Area of PD
CGEffRef Effective channel gain after reflection

P (p)
q

The optical power of the reflected light wave at the pth reflecting
point emitted from the qth transmitting AP

CC Channel capacity
Bde BW allotted to the eth UE by the dth AP
CGde Channel gain between dth AP and eth UE
ρe Responsivity of the receiver PD
ade Indicator function showing association of AP d-UE e
NWiFi

0 WiFi noise power
NLiF i

0 LiFi noise power
PWiFi
max Maximum transmit power of the WiFi AP
P LiFi
max Maximum transmit power of the LiFi AP

where ψ1/2 is half power semi-angle at half illuminance. ψ1/2 represents the angle within

which half power of the incoming light is concentrated. It can be seen that is inversely pro-

portional to ψ1/2. Thus, as ψ1/2 increases, the directionality and the value ofm decreases

and vice-versa. It can be seen that the parameter m tells about the directionality of light

emitted. Larger the value of m, higher is the directionality. For a traditional Lambertian

source,m = 1.

Next, the channel gains of the NLOS light components received by the PD at a UE are

calculated. The (l−1)th reflection point acts as the source of the lth reflected light ray. The

lth reflection point is treated as a virtual receiver, while the (l − 1)th reflection point acts
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as a virtual light source. The authors in [116] show that the total channel gains between

pairs of reflecting sites determine the effective DC channel gain, CGEffRef, for a light ray

traveling through multiple reflections. Mathematically,

CGEffRef =
∞∑
p=0

CG(p), (3.5)

where CG(p) represents the DC channel gain after the pth reflection from the source LED.

The variable p refers to the reflection index. This can also be expressed as

CG(p) =
∫
S
CG1CG2 . . . CGp+1P

(p)
q dAs, (3.6)

P (p)
q represents the optical power of the reflected light ray after p reflections from the qth

transmitting LiFi AP. The term dAs refers to a very small reflection surface area. The in-

tegration considers the tiny areas of all wall surfaces as variables. CG1, CG2, . . . , CGp+1

are the DC channel gains for the path of each reflected component, as described in [116],

and are given as

CG1 = (m+1)As

2πd2
1

cosm(ϕ1) cos(ψ1),

CG2 = As

πd2
2

cosm(ϕ2) cos(ψ2),

.

.

.

CGp+1 = As

πd2
p+1

cosm(ϕp+1) cos(ψp+1)Topt(ψp+1)g(ψp+1),

(3.7)

for b = 1, 2, . . . , p + 1, the irradiance angle is ψb and the incidence angle is ϕb at the

p reflections. The variable As represents the incident surface area. Here, b is a dummy

variable. The DC channel gain between the eth PD receiver and the dth LiFi AP is CGv
de

(3.1). The channel gain between the dth LiFi AP and the first reflection point is CG1

(3.7). Similarly, the channel gain between the second and third reflection points is CG2,

and the gain between the pth reflection point and the receiver PD is CGp+1. The channel

gains have a similar shape at all the reflecting sites. Topt and g(ψp+1) are properties of
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the receiving PD. The function CGp+1 depends on these variables. It represents the gain

between the receiving PD and the last reflection point. If the spectral reflectance of the

material at the pth reflecting point is Γp(λ), then P (p)
q is given by

P p
q =

∫
λ
Pd(λ)Γ1(λ)Γ2(λ) . . .Γp(λ)dλ. (3.8)

We assume that the surface of each reflecting points is made of the same material. We also

assume that for all d, Γd(λ) = Γ for d = 1, 2, . . . , p. This is because Γd depends on λ.

The total of the LOS and NLOS components gives the effective received optical power,

Peff , from a single LED. It is expressed as

Peff = CGEffRefPd + CGv
dePd = CGdePd for d ∈ D\{0}. (3.9)

The effective channel gain between AP d and UE e is given by CGde = CGEffRef +CGv
de

for d ∈ D \ {0}. Here, Pd is the power transmitted by LiFi AP d.

3.3.2 Channel Model for WiFi signal propagation

The signal received by UE e from the WiFi AP d indexed as d = 0 adheres to the WiFi

signal propagation model, incorporating both fading and path loss into the power channel

gain. We describe the received signal power using the WINNER-II channel model. WIN-

NER II model supports a wide range of propagation scenarios, including indoor, outdoor,

urban, rural, and suburban environments. LOS and NLOS conditions make it more versa-

tile and adaptable for several modern 5G and beyond wireless systems. Also, it compre-

hensively and meticulously considers advanced propagation phenomena like large-scale

fading, small-scale fading, clustered propagation effects where signals are reflected, scat-

tered, or diffracted in clusters. Several other features like Doppler spread and time evo-

lution of clusters allow it to handle dynamic environment efficiently. The channel model

for WiFi signal propagation from WiFi AP (d = 0) to UE e is given as [118]
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G0e = Ldt−a0e
0e χ0e, (3.10)

where χ0e denotes independent and identically distributed Nakagami fading channel pa-

rameter for WiFi links, dt0e is the distance between UE e and WiFi AP (d = 0), and a0e is

the path-loss exponent. The value of L here is L = 10X/10, whereX = M +N log10

(
fc

5

)
describes the relationship, where fc represents the carrier frequency in GHz, andM andN

are propagation constants determined by the propagation model. For LOS environment,

M = 46.8 and N = 20, where as for an NLOS environment,M = 43.8 and N = 20.

The channel parameter models the amplitude variations of a wireless signal due to mul-

tipath propagation. The probability density function (PDF) of χ0e is characterized by the

Nakagami-κ distribution as

PDF (r) = 2κκ

Γ(κ)Ωκ
r2κ−1 exp

(
− κ

Ω
r2
)
, r ≥ 0, (3.11)

where κ ≥ 0.5 is the fading parameter, indicating the severity of fading and r =
√
∥y0e∥2

is amplitude of received signal. Ω is the average power of the received signal, and Γ(κ)

is the Gamma function. This versatile Gamma distribution encompassing various fading

conditions. For κ = 1, it approximates to the Rayleigh distribution, representing severe

fading with no LOS component. For κ > 1 to ∞, it approximates to the Rician fading

distribution.

3.3.3 Achievable Data Rate

As mentioned earlier, our focus in this chapter is on maximizing the sum-rate of hybrid

WiFi/LiFi systems. It is essential to understand how channel capacity (CC) for the achiev-

able sum-rate works for a UE when connected to either a WiFi or LiFi AP. To determine

the feasible data rate for a UE connected to a WiFi AP, we use the Shannon’s capac-

ity formula. However, when a UE connects to a LiFi AP, the application of Shannon’s

capacity has to be investigated. Though exact capacity calculations are yet under investi-
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gation [15], the upper and lower bounds on achievable capacity have been derived [119].

When connected to a LiFi AP, a UE communicates through IM/DD of light, where the sig-

nal amplitude represents instantaneous optical power. Intensity modulation can be easily

achieved by changing the bias current of an LED. In a direct-detection receiver, the photo-

diode generates a photocurrent that is directly proportional to the optical power it receives.

Consequently, the signal must be real-valued and non-negative. Due to these constraints,

directly applying the Shannon’s capacity formula may not yield accurate results.

Investigations on the IM/DD CC impaired by Gaussian noise show that the lower bound

serves as a useful approximation for CC in LiFi networks. Hranilovic et al. [120] approxi-

mated lower and upper bounds of CC for bandwidth and power constrained Gaussian noise

corrupted intensity modulated channels. Lapidoth et al. [119] investigated CC for upper

and lower bounds in optical channel. It considers additive white Gaussian noise (AWGN)

corrupted output with non-negative channel inputs. Farid et al. [121] investigated the CC

using pulse amplitude modulation and given lower and upper bounds. As investigated

by authors in [120, 119, 121, 122], the CC of IM/DD can be approximated with a lower

bound as

CC = 1
2
B log2

(
1 + w

ρ2P 2
eff

σ2

)
, (3.12)

where ρ is the responsivity, w = e/2π is a constant (e is the Euler’s number), B is the

modulation bandwidth, Peff is optical power received and σ2 is the Gaussian noise power.

A factor of 1/2 appears as a result of various constraints in LiFi [119]. It was found that

at high SNR, (3.12) is true and in concurrence with upper bound.

3.3.4 Communication Model

Let X = [x0, x1, . . . , x|D|] be the signal vector transmitted by the LiFi APs and WiFi AP.

For communication, the UEs receive signal either from LiFi AP or from WiFi AP. The

received signal y0e at UE e from WiFi AP, indexed as d = 0, is expressed as

y0e =
√
G0eP0 × x0 +NWiFi

0 , (3.13)
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where NWiFi
0 is AWGN. When the UE e is connected to a LiFi AP d = 1, 2, . . . , |D| − 1,

yde will be expressed as

yde = ρeGdePdxd +
∑

k∈D\{d}
ρeGkePkxkDk(αke′) +NLiFi

0 , (3.14)

where ρe is responsivity andNLiFi
0 includes thermal noise and shot noise. Shot noise is the

ambient light present in indoor system. In the receiver circuitry, thermal noise occurs due

to thermal agitation of electrons in the resistors. To accommodate the case of idle APs, a

term Dk(αke′) is included in (3.14) and is given as

Dk(αke′) =

1−
∏

e′∈E\{e}
(1− αke′)

 , (3.15)

where αke′ is indicator function showing association of UE e′ with AP k such that

αke′ =


1 if UE e′ is associated to AP k

0 otherwise.
(3.16)

The term Dk(αke′) is included after considering a practical scenario of idle APs. It is

possible that a LiFi AP gets switched off due to hardware failure and it is not transmitting.

Let AP d - UE e be the desired AP-UE pair, and AP k is the interferer AP. The term αke′ is

the indicator function showing whether interferer AP k is connected to a UE e′ ̸= e or not.

In case AP k is connected to some UE e′ ̸= e, Dk(αke′) = 1 and the interference caused

to UE e will be taken into account. If AP k is lying idle, it will not cause interference to

UE e and Dk(αke′) = 0.

The instantaneous achievable data rate is expressed as

rde =


B0e log2 (1 + SINR0e) , for d = 0 and

1
2Bde log2 (1 + wSINRde) , for d ∈ D\{0},

(3.17)
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where SINR0e and SINRde are lower and upper bounds and given as

SINR0e = P0G0e

NWiFi
0 B0e

, and

SINRde = CG2
deP

2
d

NLiFi
0 B

de
+
∑

k∈D\{d} ρeCG2
ke
P 2

k

(
1−
∏

e′∈E\{e} (1−αke′ )
)2 ,

(3.18)

whereB0e andBde are bandwidths of WiFi AP-UE pair and LiFi AP-UE pair respectively.

Based on above expression the throughput of AP d can be given as

rd =
∑
e∈E

aderde. (3.19)

3.3.5 The Resource Allocation Problem

In this section, we define the joint optimization problem of resource allocation with several

constraints. The desirable objective in resource allocation is achieving maximum total

data rate. However, the maximization of data rate is subject to constraints on bandwidth,

transmission power, and SINR. The resource allocation problem is thus formulated as

P : max
Bde,Pd,ade

rd, for d ∈ D, e ∈ E . (3.20)

The constraint on bandwidth subjected to LiFi APs is given as

C1 :
∑
e∈E

adeBde ≤ BLiFi
max , for d ∈ D\{0}. (3.21)

The constraint on bandwidth subjected to WiFi AP is given as

C2 :
∑
e∈E

a0eB0e ≤ BWiFi
max , for d = 0, (3.22)

where BLiFi
max and BWiFi

max are the maximum bandwidths allotted to LiFi AP and WiFi AP

respectively. The constraint to power transmission of LiFi AP is given as

C3 : 0 ≤ Pd ≤ P LiFi
max , for d ∈ D\{0}, (3.23)
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similarly for WiFi AP, the constraint on the transmission power PWiFi
max is given as

C4 : 0 ≤ P0 ≤ PWiFi
max , for d = 0, (3.24)

where P LiFi
max and PWiFi

max are the maximum transmission power allotted to LiFi AP and WiFi

AP respectively. In addition the constraint on SINRde to have reliable communication is

given as

C5 : SINRde ≥ γde, for d ∈ D, e ∈ E . (3.25)

In (3.25), γde is the minimum threshold for SINRde and when it holds the equality fol-

lowing conditions must be satisfied to prevent SINR constraint violation [101, 123]

1−∑d∈D
∑
e∈E ξde > 0, and∑

d∈D
∑
e∈E βdξe ≤ 1,

(3.26)

where,

ξde =
(

1 + 1
γde

)−1

, and (3.27)

βde = N0Bde

(CGdePd/γde)−N0Bde

+ 1. (3.28)

It can be seen that the maximization problem in (3.20) -(3.25) is non-concave. It also

involves integer optimization due to the presence of association parameter (ade and ake′ ).

Non-concave functions can have multiple local optima, hence it is difficult to identify

global optimum. Algorithms may converge to a local minimum rather than the global

minimum. For a non-concave objective function f(z), there may exist several points

z1, z2, . . . , zk such that f(z1) ≥ f(z2) ≥ · · · ≥ f(zk), where z1 may not correspond to the

global maximum. Non-concave problems may involve complex, non-convex constraints,

which can complicate the optimization process andmay lead to suboptimal solutions. For a

constraint g(z) ≥ 0, where g(z) is non-concave, the feasible region Sz = {z | g(z) ≥ 0}

can be non-convex, possibly consisting of disconnected components, complicating the

search for an optimal solution.
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Integer optimization problems are generally NP-hard, meaning there is no known

polynomial-time algorithm for solving them. They are challenging due to their non-

convex and discrete nature. As the number of variables and constraints grows, their pa-

rameters and computational requirement increases exponentially.

To address the issue of non-concavity and integer optimization, we propose a DQN learn-

ing based solution.

3.4 Resource allocation Algorithm for DQN based Hy-

brid WiFi/LiFi System

In this section, a DQN-based learning algorithm has been proposed to address the resource

allocation problem formulated in (3.20). The proposed method aims to maximize the

achievable data rate of AP d while satisfying the constraints mentioned in (3.21)-(3.26).

It works on the three fundamental components: state, action, and reward. The state vector

represents the current status of the environment, the action vector defines the decision

taken in response to the observed state, and the reward vector quantifies the system’s

performance based on the executed action.

Let the state vector be denoted as Sde = {s1
de, s

2
de, . . . , s

l
de} and the action vector asAde =

{a1
de, a

2
de, . . . , a

m
de}. The values of l andm depend on the specific formulations of Sde and

Ade. At a given time step t, the system is in state sde(t) ∈ Sde and receives a corresponding

rewardRd(s, a). When an action ade(t) ∈ Ade is executed, the system transitions to a new

state sde(t+ 1) ∈ Sde. The action ade(t) directly influences the reward obtained.

The CU is responsible for training the learning algorithm to optimize association param-

eter, bandwidth and power allocation to the APs. This process is executed iteratively, to

achieve the maximum reward.
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3.4.1 Framework for Learning

The maximization of achievable data rate while satisfying the constraints in (3.21)-(3.26)

has been carried out with the help of DQN-transfer learning. It works with the help of

state, action and reward vectors formulated as follows.

3.4.1.1 Action Space

After observing the present environment, the player (CU) takes an action. The action

space defines the set of actions that can be taken by the player. Let Bde and Pd are the

discretized sets of Bde and Pd. The following formulations made are

Bde =

0, BWiFi/LiFi
min

(
BWiFi/LiFi
max

BWiFi/LiFi
min

) u

(|Bde|−2)
, u = 0, 1, 2, ..., |Bde| − 2, (3.29)

where BWiFi/LiFi
min and BWiFi/LiFi

max are the minimum and maximum values of Bde for WiFi AP

and LiFi APs respectively. Similarly,

Pd is obtained as

Pd =

0, PWiFi/LiFi
min

(
PWiFi/LiFi
max

PWiFi/LiFi
min

) u

(|Pd|−2)
, u = 0, 1, 2, ..., |Pd| − 2, (3.30)

where PWiFi/LiFi
max and PWiFi/LiFi

min are the maximum and minimum levels of the transmit power

forWiFi AP and LiFi APs respectively. The discretized parametersBde and Pd, along with

ade, are utilized to obtain the threshold γde, as defined in (3.18), for each communication

APd- UEe link. The state action vector is given as

Ade = {γ1
de, γ

2
de, . . . , γ

|Bde|
de }. (3.31)

During each iteration, the CU selects a value from the setAde for each AP. It is important to

emphasize that the selection process does not directly involve choosing a threshold value.

Instead, selecting the appropriate values of Bde and Pd to achieve the required minimum

SINR, γde. Next, we define the state vectors.
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3.4.1.2 State Space

We define a state spaceSde with binary variables given as Sde = {Ide1 , I
de
2 , . . . , I

de
6 }, where

I1 to I6 are indicators variables that assume a value 0 or 1. Each of these indicator variables

respectively take a value 0 if the constraint in (3.21) - (3.28) are satisfied. On the other

hand, each of these indicator variables take value 1 if these constraints are not satisfied.

They are written as follows:

Ide1 =


0, if ∑e∈E adeBde ≤ BLiFi

max , for d ∈ D\{0}, e ∈ E ,

1, otherwise.

Ide2 =


0, if ∑e∈E a0eB0e ≤ BWiFi

max , for d = 0, e ∈ E ,

1, otherwise.

Ide3 =


0, if 0 ≤ Pd ≤ P LiFi

max , for d ∈ D\{0}, e ∈ E ,

1, otherwise.

Ide4 =


0, if 0 ≤ P0 ≤ PWiFi

max , for d = 0, e ∈ E ,

1, otherwise.

Ide5 =


0, if ∑d∈D,e∈E ξde(γde) < 1, for d ∈ D, e ∈ E ,

1, otherwise.

Ide6 =


0, if ∑d∈D,e∈E βdeξde(γde) < 1, for d ∈ D, e ∈ E ,

1, otherwise.

(3.32)

3.4.1.3 Reward

When an action is taken, the reward is received by the system. The immediate reward

received after a particular action is

Rd(s, a) =


rfix, if

∑6
c=1 I

d
c > 0,

rd, otherwise,
(3.33)
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where rfix is the reward smaller than reward obtained for action violating the interference

constraints and rd is reward received when constraint are satisfied.

3.4.2 DQN Transfer Learning for a newly entered UE

When a set-up has fixed number of UEs, it is static in nature. A UE entering or leaving the

set-up makes it dynamic. Let us consider the former case. Whenever a new UE enters the

room, data collection for the newUE and re-execution of theDQN algorithm are needed. It

limits the application of DQN learning in hybrid WiFi/LiFi systems. Thus, DQN learning

application for a dynamic hybrid WiFi/LiFi system is complex.

We investigate the application of transfer learning [124] to address this issue. Transfer

learning has been found as an efficient tool to mitigate the data insufficiency problem.

We use the deep transfer learning for efficient transfer of the knowledge gathered by the

static hybrid WiFi/LiFi network when a new UE enters it. Our proposed transfer learning

algorithm is an example of positive transfer learning. It obtains an optimal policy for

transferring the knowledge obtained from the UEs present in the environment to the new

UE entering the environment. With the entrance of the newUE, the static network converts

to the dynamic network. With the help of the transfer of knowledge, a new UE achieves

higher data rates with fewer numbers of iterations. For the second task, i.e., when the new

UE enters into the environment, it receives the data from the nearest UE present in the

environment. The number of iterations required to achieve a similar level of data rates for

the new UE is far less than that required for the UE previously present in the environment.

It is also evident from the simulation results plotted in Fig. 3.3 in Section 3.5. Also, Table

3.2 compares the number of iterations required for convergence. It shows positive transfer

learning because the number of iterations required is much less. Positive transfer learning

occurs when knowledge gained from the first task improves the learning performance in

the second task, hence improving convergence speed. In a practical scenario, the system is

dynamic, i.e, new UEs will be entering and existing UEs will be exiting the environment

randomly. A newly entered UE needs to get connected to one of the APs. Most part of the

information it uses is already learned while doing the previous task. First, the information
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for the UE nearest to the new UE will be transferred to it. Now, the new UE will execute

the algorithm based on this information. In this way, it speeds up the performance of

the system. This happens as the DQN network estimates the new Q-function based on

the reward of every action for each AP. The CU learns the environment with each AP

and then it takes the highest reward action. That means associating the UE to an AP in

a way that that AP gets the highest data rate as a reward. The parameters of Q-function

are updated immediately as the AP receives the reward. When a new UE joins the setup,

making use of already gathered information from the environment will be an efficient

procedure. This process improves the learning performance. The knowledge retained

from the environment while doing the previous task will be used as the new UE enters the

scenario and the information will follow the algorithm. For DQN based learning algorithm

the optimal policy π for immediate reward Rd(s, a) over a long span of time has to be

followed. Mathematically, the value of state function V π(s, a) is given as

V π(s, a) = max
π
{

∞∑
t=0

ζtE(R(s, a))t|st = s, at = a, π}, (3.34)

where Q∗(s, a) is the optimal action-value function ∆= max
π
V π(s, a). It is obtained with

the help of Bellman’s equation and is given as

Q∗(s, a) = max
a∈A
{r(s, a) + ζQ∗(s′, a′)}, (3.35)

where ζ is the learning rate update at Q∗(s, a). In equation (3.34), the function Q∗(s, a)

iteratively converges to its optimal value as t → ∞. However, for large-dimensional

state-action spaces, obtaining the optimal action-value function Q∗(s, a) becomes chal-

lenging with (3.35). To address this, a function estimator is utilized to approximate the

optimal action-value function. As proposed in [80], a neural network can be employed for

this estimation, whereQ(s, a; θ) ≈ Q∗(s, a). In this chapter, we used a multilayer percep-

tron (MLP) network for this purpose. Specifically, a fully connected feed-forward MLP

network is implemented. The DQN-based methodology uses neural network as an action-

value function approximator, incorporating the experience replay mechanism to enhance
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learning efficiency.

The CU records experiences at each time step t, and is defined as ed(t) =

{ade(t), sde(t), rd(t), sde(t + 1)}, and these experiences are stored in a replay memory

Dd(t) = {ed(1), ed(2), . . . , ed(t)}.

To approximate the Q-value function, two MLP networks are employed: the current Q-

networkQ(s, a) and the target Q-networkQ(s, a; θ). Here, θ and θ− denote the parameters

of the current and target networks, respectively. At each iteration, the parameter θ of

the action-value function is updated using experiences sampled from the replay memory

Dd, where a random sample (a, s, r, ŝ) is selected. After fixed number of iterations, the

target network parameters θ− are updated by setting them equal to the current network

parameters ϕ. The update process employs the gradient descent method to optimize the

parameters effectively. This update procedure is based on a gradient descent algorithm as

L(θd) = E

(rd(s, a) + ζmax
â∈A

(
Q̂d(ŝ, â, θ−

d )
)
−Qd(s, a, θd)

)2
 . (3.36)

Algorithm 1 presents the DQN-based transfer learning approach to maximize the achiev-

able data rate. We considered newly entering UEs into the system. Firstly, individual rate

rd is optimized. Since rd values are non-negative and their summation constitutes the total

system sum-rate r, hence optimizing each rd ensures the overall system optimization.

3.5 Simulation Results

The set-up has been considered as having 4 LiFi APs, 1 WiFi AP and 4 UEs in a room.

One AP can be connected to multiple UEs, but an UE can be connected to one AP only

at a time. The data has been taken from [50] for our experimental simulations. The noise

at LiFi AP NLiFi
0 is 10−21A2/Hz, for each LiFi AP (LED lamp) the average optical power

is 9.2 W, PD has an area of Apd = 1 cm2, and has a responsivity ρ of 0.28 A/W. The

receiver that has been considered is of FOV 60◦, and its maximum illuminous intensity

is considered as 30 cd. Discount factor of 0.9 and learning rate ζ of 0.01 are used for
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Algorithm 1 Proposed DQN Transfer Learning Algorithm
for d = 0, 1, 2, . . . , |D| do
Start
Start replay memory
Start the parameter θd for policy π(ade|sde; θd)
Start neural network for function Qd with random θd
Start target Q̂d with θ−

d = θd
end for
for Itr =1:KK do
Receive the initial state
for Episode = 1: EPD do
for t < Titr do
for i = 0, 1, 2, . . . , |D| do
Select a∗

de(t) as shown below for e ∈ E
Chose from action space by finding

ade(t) = arg max
ade(t)

Q(sde(t), ade(t); θd) (3.37)

If maximization unsuccessful, chose arbitrary action with probability ϵ
Amend sde(t+ 1) and rd(t) according to (3.32) and (3.33)
Save replay memory Dd created for AP d with ed(t) =
(ade(t), sde(t), rd(t), sde(t+ 1)
Amend the present θd ofQ(sde(t), ade(t); θd), by taking specimen mini-batch
of transitions from Dd(t)
After regular intervals, amend θ−

d = θd
Obtain mini batch specimens from Dd

end for
end for

end for
end for
Execute r = ∑

d∈D rd
The optimal rds are obtained for all APs. Note that every rd > 0, thus maximizing r
will optimize the overall system
Arrival of a new UE
Newly arrived UE is indexed as |E|+ 1
Start Q for AP d with ade(t) parameters related to the UE closest to the newly arrived
|E|+ 1th UE {The UE closest to the |E|+ 1th UE data is recorded by the CU (transfer
learning)}
for d = 0, 1, 2, . . . , |D| do
Algorithm 1 is initiated with the persisting ade(t) for |E|+ 1 UEs. The iterations are
carried on further.

end for
Perform r = ∑

d∈D log2 Rd

all the APs. The exponent of path-loss a0e is considered as 2.8, the order of Lambertian

emission m = 1.2 has been considered, the dimensions of room are taken as 9 m ×9
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m ×5 m, the separation between the UE and the floor is 0.9 m. The center of the room

ceiling has the WiFi AP. The LiFi APs are located at room coordinates
[
± 10√

8 ,±
10√

8

]
. We

consider a replay memory and buffer mini-batch of sizes 100 and 10 respectively. The

algorithm is run for 1000 monte-carlo simulations. In the input layer, neural networks has

7 nodes : 6 state nodes and 1 action node. The DQN structure consists of two hidden layers

with 3 and 2 neurons respectively. The association parameter, downlink bandwidth, and

transmission power are state and action vector functions. Therefore, passing through input

means passing through these three parameters. As iterations proceed, algorithm converges

and the sum-rate achieved is maximized.
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Figure 3.3: Graph showing the behavior for achievable sum-rate with the number of iter-
ations when a new UE enters the room

Fig. 3.3 shows the behavior of achievable sum-rate with the number of iterations when a

new UE enters the experimental room. The sum-rate achieved with transfer DQN learning

is compared with the sum-rate achieved with DQN learning and with exhaustive search

(ES) algorithm. It can be seen that both the DQN learning algorithms outperform the ES

algorithm. ES algorithm reaches its maximum performance in around 5000 iterations.
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Figure 3.4: (a) Graph depicting the behavior for the number of iterations vs the number
of UEs for the new incoming UE in the room (b) Comparison of BER vs SNR

The maximum value it is able to reach is 9 Mbits/s (or Mbps). A normal DQN learning

algorithm takes around 3500 iterations to reach its maximum possible sum-rate value of

10Mbps. However, the value achieved by DQN learning algorithm is achieved by transfer

DQN learning in less than 500 iterations.

Fig. 3.4a shows the comparison of number of iterations with the varying number of UEs

present inside the room. The number of UEs present inside the room are varied from

2 to 48. With 4 UEs, the outcomes for different schemes investigated in Fig.3.4a can

be matched with Fig. 3.3. Further, as the number of UEs increase, a sharp increase is

observed in the number of iterations for convergence of both DQN learning and ES. How-

ever, DQN transfer learning shows comparatively a very slow increase. For 22UEs inside

the room, ES converges in nearly 13748 iterations, DQN learning converges in 10000 it-

erations, while transfer DQN learning converges in just 650 iterations. The data can be

seen in Table 3.2. Fig. 3.4b shows the bit error rate (BER) vs SNR curve. As expected

ES performs worst, with BER remaining near 10−7 even at 30 dB. Transfer DQN learning

shows clear gains and significantly outperforms both the DQN learning and ES achieving

the best result of 10−10 at 25–27 dB. By using prior knowledge, transfer DQN learning

ensures faster convergence and significantly improved BER in hybrid WiFi/LiFi systems.
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Table 3.2: No. of UEs vs No. of Iterations for different schemes

UEs Nos./
Iterations

DQN Learning ES Transfer DQN
Learning

2 1788 3261 83
7 4577 6916 243
12 6857 9556 387
22 10804 13748 650
32 14310 17214 897
47 19093 21680 1247

As the number of UEs are increasing, it increases the possibility of presence of a UE near

to the newly entering UE, which further increases the possibility of reliable transfer of

information to it.
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Figure 3.5: (a) Graph depicting the behavior for achievable sum-rate with the number of
UEs when a new UE enters the room (b) Graph depicting the behavior for the achievable
sum-rate vs the height of the room for a new UE entering the room

Fig.3.5a shows the effect of number of static UEs on the achievable data rate (bits/s) of

the proposed transfer learning scheme, the DQN learning scheme and the ES mechanism.

The number of UEs vary from 4 to 49, while a new UE is entering into the room. The

DQN transfer learning scheme outperforms both the ES and DQN learning. Note that

DQN learning achieves an optimal performance after more number of iterations. Thus,

the final achievable data rate it achieves is comparable to that of transfer learning. How-

ever, it pays the cost of 7 − 10 times more iterations to obtain the same achievable data
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rate as obtained by transfer learning. Thus, it is actually significantly inferior as compared

to transfer learning. Note that the achievable data rate first increases with the increase in

the number of UEs. This happens due to the increased number of AP-UE links. How-

ever, as the number of UEs increases beyond 28, a decrease in the achievable sum-rate is

observed. This is because more UEs form more AP-UE links which also increases inter-

ference to every UE. Therefore, after a certain number of UEs in the room, a decrease in

the achievable sum-rate is observed.
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Figure 3.6: (a) Comparison of spectral efficiency vs height of the room (b) Comparison
of spectral efficiency vs number of iterations

Fig.3.5b shows the variation of the achievable sum-rate with the height of the room. The

DQN transfer learning algorithm outperforms the DQN learning algorithm and the ES

algorithm. From (3.1), it can be seen that the channel gain reduces as the distance between

the transmitter and the receiver increases. A decrease in the channel gainmagnitudemeans

more distortion in the received signal. An increase in room height increases transmitter-

receiver separation. Thus, increasing room height leads to a sharp decline in the achievable

sum-rate value for all the algorithms under investigation.

Fig.3.6a shows spectral efficiency (bits/s/Hz) versus room height. As height increases,

path loss and dispersion reduce the SNR, leading to lower spectral efficiency. Trans-

fer learning consistently outperforms DQN and ES, demonstrating superior robustness.
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Fig.3.6b shows spectral efficiency (bits/s/Hz) versus number of iterations. Transfer DQN

learning converges rapidly to nearly 10 bits/s/Hz, outperforming both DQN and ES. DQN

learning improves over ES, however, remains less efficient without transfer learning. ES is

computationally intensive, converges slowly, and yields lower spectral efficiency. Over-

all, transfer DQN learning achieves faster convergence and higher efficiency, making it

the optimal choice in hybrid WiFi/LiFi systems.

3.6 Conclusion

In this chapter, the resource allocation problem for hybrid WiFi/LiFi system has been

addressed. The problem of joint optimization of bandwidth, association parameter, and

transmission power has been addressed by the proposed algorithm. The proposed algo-

rithm successfully overcomes the non-concavity issue in this joint optimization problem,

particularly for the case of a newly entering UE into the set-up with the help of transfer

learning. The proposed algorithm uses the already gathered data for the UE nearest to the

new UE. Simulations verify that proposed algorithm shows 10% more achievable sum-

rate with 14.28 lesser percentage of iteration to converge. For new UEs the maximum

achievable sum-rate is achieved with 54% lesser number of iterations.

3.7 Appendix A

3.7.0.1 Elaboration on the integer optimization and non-concavity issues in P

Note that our objective function is the sum-rate rd, which is the cumulative of all the

individual AP to UE link data rates rde. The data rate rde is given by Shannon’s capacity

and is a function of SINR as

rde = Bde log2(1 + SINRde)

From (3.38) it can be seen that SINR is a function of association parameter ade which

takes integer values 1 and 0 for UE e being associated and not being associated to AP d
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respectively. Thus, the objective function defined in this work is a non-concave integer

optimization problem. For the sake of completeness, the non-concavity of rd in ade, Bde

and Pd can be proven as in our problem P for d ∈ D\{0} the objective function is given

as
rd = ∑

e∈E
1
2adeBde×

log2

1 + w
CG2

deP
2
d

NLiFi
0 B

de
+
∑

k∈D\{d} ρeCG2
ke
P 2

k

(
1−
∏

e′∈E\{e} (1−αke′ )
)2

 . (3.38)

Due to the presence of indicator function ade the system is non-concave. Since we know

that the sum of logarithmic function is strictly concave. However, due to ade, rd will be

neither concave nor convex. To prove that, let us take a system as d = 1, 2 and e =

1, 2. Let us assume a11 = 1, a12 = 0, a21 = 0 and a22 = 1 and define vector x =

{x1, x2, x3, x4} where x1 = B11, x2 = B22, x3 = P1, and x4 = P2 and
√
wCG11 =

a,
√
ρCG12 = b,

√
ρCG21 = c,

√
wCG22 = d and N0 = g. Then,

rd(x) = 1
2x1 log2

(
1 + a2x2

3
gx1+b2x2

4

)
+ 1

2x2 log2

(
1 + d2x2

4
gx2+c2x2

3

)
. (3.39)

To check concavity, we find the Hessian matrix of rd wrt x, i.e., ∇2
xrd(x). The elements

of ∇2
xrd are obtained as follows

d2rd
dx2

1
= −a

2gx2
3((a2gx2

3 + 2c2gx2
4)x1 + 2a2c2x2

4x
2
3 + 2c4x4

4
ln(2)(gx1 + c2x2

4)2(gx1 + a2x2
3 + c2x2

4)2 , (3.40)

d2rd
dx2

2
= −d

2gx2
4((d2gx2

4 + 2b2gx2
3)x2 + 2d2b2x2

3x
2
4 + 2b4x4

3
ln(2)(gx2 + c2x2

3)2(gx2 + d2x2
4 + b2x2

3)2 , (3.41)

d2rd

dx2
3

= − −2d2b2x2
4x2

(b2x2
3+gx2)2(

d2x2
4

b2x2
3+gx2

+1)
+ 8d2b4x2

4x2x2
3

(b2x2
3+gx2)3(

d2x2
4

b2x2
3+gx2

+1)
−

4d4b4x4
4x2x2

3

(b2x2
3+gx2)4(

d2x2
4

b2x2
3+gx2

+1)
+ 2a2x1

(gx1+c2x2
4)(

a2x2
3

gx1+c2x2
4

+1)
−

4a2x1x2
3

(gx1+c2x2
4)2(

a2x2
3

gx1+c2x2
4

+1)
,

(3.42)
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and
d2rd

dx2
4

= − −2a2c2x2
3x1

(c2x2
4+gx1)2(

a2x2
3

c2x2
4+gx1

+1)
+ 8a2c4x2

3x1x2
4

(c2x2
4+gx1)3(

a2x2
3

c2x2
4+gx1

+1)
−

4a4c4x4
3x1x2

4

(c2x2
4+gx1)4(

a2x2
3

c2x2
4+gx1

+1)
+ 2d2x2

(gx2+b2x2
3)(

d2x2
4

gx2+b2x2
3

+1)
−

4d2x2x2
4

(gx2+b2x2
3)2(

d2x2
4

gx2+b2x2
3

+1)
.

(3.43)

It is evident that d2rd

dx2
1
and d2rd

dx2
2
are always negative. However, the nature of d2rd

dx2
3
and d2rd

dx2
4
is

not constant. It can become positive or negative for varying values ofB11, B22, P1 and P2.

Thus, for the LiFi network, rd will neither be concave nor convex in B11, B22, P1, and P2.

Next, we investigate the behavior of rd in the WiFi network. The system model consists

of only one WiFi AP indexed as d = 0. The achievable data rate for the WiFi network is

given as

rd =
∑
e∈E

a0eB0e log2

(
1 + P0G0e

NWiFi
0 B0e

)
. (3.44)

For simplicity in calculations, let us consider a0e = 1, |E| = 1, NWiFi
0 = a and a vector

x = {x1x2} where x1 = B01 and x2 = P0G0e. The achievable rate can be written as

rd(x) = x1 log2

(
1 + x2

ax1

)
. (3.45)

The Hessian matrix ∇2
xrd(x) elements are obtained as

d2rd(x)
dx2

1
= −x2

2
ln(2)x1(ax1 + x2)2 , (3.46)

and
d2rd(x)
dx2

2
= −a2x1

ln(2)(ax1 + x2)2 . (3.47)

It is evident that both the elements of ∇2
xrd(x) are negative. The higher order of |E| will

result to sum of such similar functions. We know that rd will be jointly concave in B0e

and P0. However, it is neither concave nor convex in the indicator function a0e. Thus,

jointly it will be neither concave nor convex in a0e, B0e and P0.
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Chapter 4

Actor-critic DDPG in Hybrid RF/LiFi

systems

As discussed in the previous chapter, a hybrid RF and LiFi network combines the strengths

of RF and LiFi technologies. RF offers broad coverage, while LiFi provides high data

rates. As these technologies operate on non-interfering spectra, they can co-exist without

interfering with each other. This setup not only enhances the data rate but also makes

the network more reliable, especially when physical obstacles might block signals. How-

ever, resource management in hybrid RF/LiFi networks is challenging due to the dynamic

environment and the differing characteristics of the two technologies. Effective resource

allocation maximizes data rate in these networks. DQN based mechanisms can overcome

the issue of non-concavity. However, they struggle in dynamic systems with large dimen-

sions and continuous action spaces.

In this chapter, we introduce a model-free DRL approach to address the resource alloca-

tion problem in hybrid RF/LiFi networks. Our DRL model is designed to handle real-

world conditions, considering factors like blockages and user mobility. Unlike traditional

methods that need extensive modeling and assumptions, our approach learns directly from

interacting with the environment, making it highly adaptable and robust. Simulation re-

sults demonstrate that our method enhances resource utilization and overall network per-
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formance, achieving a 62.8% increase in sum-rate and a 42.8% improvement in optimal

transmit power compared to conventional methods.

4.1 Overview

In the recent years, wireless internet data traffic has seen a phenomenal growth across the

RF spectrum [125]. The growth is estimated to fully saturate the RF spectrum by 2035

[2], highlighting significant future challenges. OWC, such as LiFi, present a promis-

ing possibility to alleviate the burden on RF communications. LiFi uses the unlicensed

light spectrum, offering high-data rate and bidirectional, and multi-user connectivity with-

out interfering with RF signals [11, 126, 127]. However, challenges such as inefficiency

in NLOS scenarios, random orientations, and UE mobility introduce significant channel

quality variations, underscoring the need to integrate RF and LiFi communications for

robust and mobile broadband solutions [128], [129]. The integrated system, known as

a hybrid RF/LiFi system, has emerged as a valuable addition to HetNets, alleviating the

strain on overloaded only-RF communication systems [130].

In hybrid RF/LiFi systems, optimal resource allocation remains a crucial inherently com-

plex integer non-concave problem. Conventional convex optimization based resource al-

location algorithms often fail in obtaining global optimum solutions to such problems.

These solutions are based on presumption of values for at least one parameter. However,

presuming a value does not make the system robust for optimal resource allocation. DQN

based mechanisms can overcome this issue. However, it’s limitation lies in its capability

to manage only discrete and low-dimensional action spaces and fails in dynamic systems

with large dimension and continuous action spaces [32, 31, 17]. Dynamic systems such as

hybrid RF/LiFi are often continuous rather than discrete. DQN does not support continu-

ous action spaces. It requires discretization of the action space, hence struggles and leads

to suboptimal performance. In our proposed dynamic hybrid RF/LiFi system, the action

space grows exponentially with the large size of the rooms and number of UEs. DQN is

forced to discretize continuous actions which makes it slow and computationally expen-
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sive. Therefore, we are motivated on exploring a machine learning technique designed

to optimize future rewards in a large dynamic environment. Our objective is to devise an

intelligent system that maximizes the overall average throughput for all UEs. To address

these objectives, we investigate the application of off-policy DRL, which is a fusion of

reinforcement learning and deep learning techniques [131].

In this Chapter, we propose to apply a model-free off-policy actor-critic algorithm to learn

policies in high dimensional continuous action spaces. A model-free approach means that

the agent (CU) does not require prior knowledge of the environment; instead, it learns

optimal policies by directly interacting with the environment and collecting experiences

over time. Our proposed DDPG-based algorithm is based on the DRLmechanism. DDPG

is an off-policy-based DRL technique, where an agent can pick a policy not solely from its

current policy (observational policy) but also from its past experiences (behavioral policy).

Off-policy learning means that the agent learns from past experiences stored in a replay

buffer rather than relying only on the current policy. It can learn from past experiences. It

follows the actor-critic architecture, which enables it to learns both the optimal policy and

the value function efficiently. It supports continuous action and state spaces, which leads

to faster convergence and improved stability. A key feature is that it is simple and easy to

implement.

4.2 Chapter Contributions

Our main contribution in this chapter are as follows

• Novelty: We have developed a virtual environment for a hybrid RF/LiFi system

that closely emulates real-world conditions, including the dynamicity. To the best

of our knowledge, this is the first instance of such a system being created with the

application of DDPG.

• Dynamic set-up: Our model accounts for the dynamic nature of the environment

by considering the introduction of new UEs into the room and incorporating load

balancing constraints, thus reflecting a realistic and dynamic system configuration.
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Figure 4.1: Hybrid RF/LiFi Environment, and signal propagation from LiFi AP-UE

• Continuous action space: The proposed state-of-the-art algorithm utilizes a contin-

uous state and action space, resulting in a more optimal resource utilization, higher

achievable data rates, and reduced transmission power.

• DRL algorithm: Using the DRL-based DDPG algorithm which can handle continu-

ous state and action space, a comprehensive framework has beenmade to implement

the optimization goal of maximizing the achievable sum-rate.

The rest of the chapter is organized as follows: Section 4.3 explains the system model

under consideration. Section 4.4 explains the problem considered. Section 4.6 describes

the illustrated framework. In Section 4.7, simulations have been explained, and Section

4.8 concludes the chapter.

4.3 System Model

Fig. 4.1 illustrates an indoor scenario, typically representing a hall where users may be

static or moving at variable speeds, i.e., they are dynamic. Each user holds a UE. Multiple

LED APs are deployed on the ceiling, known as LiFi APs. Additionally, an RF AP is
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Table 4.1: Important notations and their meanings

Notation Meaning
e Index of APs
f Index of UEs
k The interferer AP index
ref The achievable data rate between the eth AP and the f th UE
re Downlink data rate of the eth AP
BLiFi
max Maximum BW allotted to LiFi AP

BRF
max Maximum BW allotted to RF AP
E Set of APs
F Set of UEs
m Lambertian coefficient
θef Angle of incidence
ϕef Angle of irradiance
Apd Area of PD
CC Channel capacity
Bef BW allotted to the f th UE by the eth AP
Gef Channel gain between eth AP and f th UE
ρf Responsivity of the receiver PD
αef Indicator function showing association of AP e-UE f
nrff RF noise power
nvf LiFi noise power
Pe Power transmitted by LiFi AP e
P RF
max Maximum transmit power of the RF AP
P LiFi
max Maximum transmit power of the LiFi AP

installed on the ceiling, creating a hybrid RF/LiFi setup. Together, the RF and LiFi APs

provide uninterrupted connectivity to the UEs. In this indoor scenario, UEs connect to the

LiFi AP if they are within LOS. When LOS components are absent from the LiFi AP, UEs

connect to the RF AP to maintain ubiquitous connectivity.

Fig. 4.1 also shows an enlarged version of the light communication from the LiFi AP,

providing significant details about the LiFi communication model. This link diagram il-

lustrates the relationship between the angle of irradiance from the LiFi AP coverage area

and the angle of incidence at the UE’s FOV.

The link diagram demonstrates communication between the LiFi AP and a UE, illustrating

both the direct LOS and indirect paths (NLOS) through which light signals can travel from

the LiFi AP to the UE in a hybrid RF/LiFi system. The LOS path provides the strongest

signal. In contrast, the NLOS path, involving reflections, may result in weaker and more
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distorted signals due to delays and scattering.

The light emitted by the LiFi AP forms an angleϕ, which represents the angle of irradiance.

This it the angle between the vertical axis (normal to the LiFi AP surface) and the direction

in which light is emitted. When received at the UE, the light forms an angle θ, representing

the angle of incidence. This is the angle between the vertical axis (normal to the UE

surface) and the direction from which the light is received. Both angles are crucial as they

affect the coverage area, signal strength, and overall system performance.

4.4 Problem Formulation

Let E denote the AP ensemble, with individual APs indexed as e = 0, 1, 2, . . . , |E| in the

set up shown in Fig. 4.1. TheRFAP situated at the center of the ceiling is indexed as e = 0.

The LiFi APs, serving as LED light sources, are indexed as e = 1, 2, . . . , |E| − 1. The

set F comprises UEs with indices f = 0, 1, 2, . . . , |F|. Each UE is assumed to maintain

a constant height t above the floor. UEs have the option to establish connections with

either LiFi or RF APs to receive data, contingent upon the AP offering superior data rates.

Additionally, the model accommodates the inclusion of a new UE entering the scenario.

4.4.1 Propagation Channel Modeling

In hybrid RF/LiFi, the signal is transmitted over optical and RF channels. We first explain

in detail the channel gain parameters for both the channels.

4.4.1.1 LiFi Channel Gain

Let a UE f connect to a LiFi AP in LOS. The DC channel gain Gv
ef is governed by the

Lambertian law model as [44]

Gv
ef = (m + 1)Apdcosmθef cosϕefTopt(ϕef )g(ϕef )

2πd2
ef

, (4.1)
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where Topt(ϕef ) is the receiving optical filter’s gain, which is either 1 or a constant value

within the receiver’s FOV, θef denotes the incidence angle at UE f from the eth AP, ϕef

is the angle of irradiance at AP e from f th UE, def represents the distance between the f th

UE and the eth AP, andm represents the exponent of the Lambertian radiation pattern, ex-

pressed asm = − ln 2
ln cosϕ1/2

, with ϕ1/2 corresponding to the semi-angle at half illuminance.

The concentrator gain, denoted as g(ϕef ), is given as

g(ϕef ) =


n2

sin2ϕFOV
if 0 ≤ ϕef ≤ φFOV

0 if ϕef > φFOV,

(4.2)

where φFOV denotes the receiver’s FOV, while n is the refractive index expressed as the

ratio of the speed of light in vacuum to that in the optical material.

The mathematical modeling of channel gain GNLOS in NLOS conditions, following the

steps performed in (3.5)-(3.8), is obtained as [128]

GNLOS =
∞∑
l=0

G(l), (4.3)

where l denotes the reflection index, and channel gain G(l) after the l reflection. The

non-ideal channel gain between the eth LiFi AP and the fth UE is expressed as

Gef = GNLOS +Gv
ef for e ∈ E\{0}. (4.4)

4.4.1.2 RF Channel Gain

The signal transmitted by RF AP and received by UE f follows the RF signal propagation

model. The signal received accounts for both fading and path loss. The received RF signal

power channel gain is modeled using the WINNER-II [118] channel model. The channel

gain between the UE and RF AP is modeled as

G0f = Ld
−a0f

t0f
χ0f , (4.5)
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where χ0f represents the Nakagami fading channel, dt0f
is the distance between UE and

RF AP, and a0f indicates the path-loss exponent. Here, the value of L is determined

by L = 10X/10, where X = M + N log10

(
fc

5

)
describes a propagation model, where

fc represents the carrier frequency in GHz, and M and N are constants specific to the

propagation environment. In LOS scenario, the values are M = 46.8 and N = 20,

whereas in NLOS scenario, the values areM = 43.8 and N = 20.

The channel parameter χ0f models the amplitude variations of a wireless signal due to

multipath propagation. The PDF of χ0f is characterized by the Nakagami-κ distribution

as

PDF (r) = 2κκ

Γ(κ)Ωκ
r2κ−1 exp

(
− κ

Ω
r2
)
, r ≥ 0, (4.6)

where κ ≥ 0.5 is the fading parameter, indicating the severity of fading and r =
√
∥v0f∥2

is amplitude of received signal, Ω is the average power of the received signal, and Γ(κ)

is the Gamma function. This versatile Gamma distribution encompassing various fading

conditions. For κ = 1, it approximates to the Rayleigh distribution, representing severe

fading with no LOS component. For κ > 1 to ∞, it approximates to the Rician fading

distribution.

4.4.1.3 Received RF and LiFi Signals

As mentioned earlier, our ultimate goal is the maximization of data rate for users, charac-

terized by achievable sum-rate maximization. Achieving sum-rate maximization involves

a step-by-step analysis of data transmission and reception at the transmitter and the re-

ceiver respectively. Thus, we explain the mathematical model of the received data, which

is the transmitted data multiplied by the channel gain and added with the noise at the re-

ceiver and interference signals. Once the data is received at the receiver, the achievable

sum-rate is formulated with the help of Shannon capacity formula, which tells the data rate

on an individual transmitter - receiver link. LetX = [x0, x1, . . . , x|E|] be the signal vector

transmitted by the LiFi APs and RF AP. When the UE f communication is established
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from an RF AP e = 0, the signal received by a UE f is given as[17]

v0f =
√
G0eP0 × x0 + nrff , (4.7)

where nrff represents AWGN.

When UE f communicates with LiFi APs, the signal received at UE f is given as

vef = ρfGefPexe +
∑

k∈E\{e}
ρfGkfPkxkDk(αkf ′) + nvf , (4.8)

where ρf represents responsivity, and nvf is thermal and shot noise. Additionally, for idle

APs, the term Dk(αkf ′) is expressed as Dk(αkf ′) =
(
1−∏f ′∈F\{f} (1− αkf ′)

)
. Here,

αkf ′ is an indicator function indicating the association of UE f’ with AP k, given as

αkf ′ =


1 if UE f ′ is associated to AP k

0 otherwise.
(4.9)

Based on the parameters formulated in this section, we next formulate the Shannon capac-

ity based achievable sum-rate expression.

4.4.2 Shannon Capacity and Achievable Sum-Rate

The CC of an RF network is obtained with the Shannon capacity formula. However, LiFi

communication uses IM/DD of light signals. The capacity of LiFi AP-UE link is formu-

lated with modified Shannon’s capacity formula [119]. The Shannon capacity formula is a

function of the bandwidth and SINR values. SINR is formulated as the ratio of product of

signal power and channel gain to product of noise and bandwidth. Since we are using mul-

tiple LiFi APs, consideration of interfering AP signal power is done in the denominator

of the SINR expression (4.13). Finally the throughput is formulated in terms of Shannon

capacity and it is maximized with constraints imposed on bandwidth and power.

The authors in [119] have approximated the CC of IM/DD (CCLiF i) using Shannon’s
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capacity formula for lower bound is given as

CCLiF i = 1
2
B log2

(
1 + w

ρ2P 2
t

σ2

)
, (4.10)

where w is a constant defined as e/2π (with e being Euler’s number), B denotes modu-

lation bandwidth, Pt signifies optical power received, and σ2 stands for Gaussian noise

power. The factor of 1/2 appears due to different constraints. On the other hand, for an RF

network the CC can be obtained with the direct application of Shannon capacity formula

as

CCRF = B log2

(
1 + P 2

t

σ2

)
, (4.11)

Hence, achievable data rate of a hybrid RF/LiFi system is given as

ref =


B0f log2 (1 + SINR0f ) , for e = 0 and

1
2Bef log2 (1 + wSINRef) , for e ∈ E\{0},

(4.12)

where SINR0f and SINRef are the SINRs on the RF and LiFi links, respectively, and

are provided as follows:

SINR0f = P0G0f

nrf
f
B0f

, and

SINRef = G2
efP

2
e

nv
f
B

ef
+
∑

k∈E\{f} ρeG2
kf
P 2

k

(
1−
∏

f ′∈F\{f} (1−αkf ′ )
)2 ,

(4.13)

where the bandwidths of the RF AP-UE pair and LiFi AP-UE pair are denoted as B0f and

Bef , respectively. With these parameters, the throughput of the AP can be determined as

re =
∑
f∈F

αefref . (4.14)

The achievable sum-rate is formulated as

r =
∑
e∈E

re. (4.15)
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4.4.3 Problem Addressed

The maximization of achievable sum-rate is subjected to constraints on bandwidth alloca-

tion, transmission power, SINR, and load balancing. As the allocation strategy involves

an indicator parameter, this problem becomes a non-convex integer optimization problem.

To solve this problem, conventional optimization algorithms presumes value of one of the

optimization parameters and subsequently optimizing other parameters. However, as all

the optimization parameters impact each other, such presumptions can lead to suboptimal

results.

The issue related to presumption of values was earlier solved with a DQN learning algo-

rithm based approach [32, 31]. However, this approach faces limitations as DQN is unable

to handle continuous and high-dimensional action spaces, restricting its application in dy-

namic systems. To address this issue, we propose the application of DDPG algorithm to

large and dynamic hybrid RF/LiFi systems. The optimization goal is explained in detail

in the next section.

4.5 Achievable Sum-rate Maximization

As mentioned earlier, our aim is to design a DDPG based algorithm to achieve sum-rate

maximization while adhering to all the constraints and load balancing. The DDPG algo-

rithm associates the UE to an AP which satisfies the constraints and assigns the optimal

transmit power and bandwidth in the system. The action vector represents the value of

the transmission power, bandwidth, and association parameters. The state vector contains

the observation state and constraints that must be fulfilled to make the reliable connection

between a UE and an AP. After observing the state of the environment (if the constraints

are satisfied), DRL agent (CU) chooses an action that maximizes the reward by satisfying

all the constraints.

The fundamental objective of hybrid RF/LiFi communication system is to maximize the

total achievable sum-rate. However, this goal is subject to constraints such as bandwidth,

transmission power, and SINR. We assume that LiFi APs have maximum available band-
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widthBLiFi
max and maximum allowable transmission power P LiFi

max , while RF APs have similar

parametersBRF
max and P RF

max, and Pe is the power transmitted by LiFi AP e. Additionally, let

yef represent the minimum SINR threshold for a e− f pair. Denoting z as [Bef , Pe, αef ],

the resource allocation problem is formulated as follows:

P : max
Bef ,Pe,αef

re, for e ∈ |E|, f ∈ |F|, (4.16)

subject to

C1 :
∑
f∈F

αefBef ≤ BLiFi
max , for e ∈ E\{0}, (4.17)

C2 :
∑
f∈F

αefBef ≤ BRF
max, for e = 0, (4.18)

C3 : 0 ≤ Pe ≤ P LiFi
max , for e ∈ E\{0}, (4.19)

C4 : 0 ≤ P0 ≤ P RF
max, for e = 0, and (4.20)

C5 : SINRef ≥ yef , for e ∈ E , f ∈ F . (4.21)

When equality is attained in constraint (4.21), the following criteria are obtained to prevent

SINR violation

1−∑e∈E
∑
f∈F ζef > 0, and∑

e∈E
∑
f∈F κeζe ≤ 1,

(4.22)

where,

ζef =
(

1 + 1
yef

)−1

, and (4.23)

κef = n0Bef

(GefPe/yef )− n0Bef

+ 1. (4.24)

Possibilities exist that a particular AP offers higher SINR than other APs, resulting into

a huge number of UEs associating with it. The sum-rate in this case remains unaffected,

however, the individual UE data rates may see a drastic reduction. Such a condition,
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known as load imbalance, must be avoided. To ensure load balancing, we impose the

final constraint on this system as

C6 : be ≤ b, (4.25)

where be is the number of UEs associated with an AP and b is the maximum number of

UEs that can be associated to an AP.

The problem in (4.16) is a non-concave integer optimization problem. Conventional op-

timization algorithms assume one of these values. Therefore, we apply model-free DRL

algorithms to solve the problem.

4.6 Framework

We formulate an action space composed of transmit power, bandwidth, and association

parameter. The state space represents the two parts. The former has information about the

location and positioning of UE andAP. The latter ensures that all the constraints mentioned

in (4.17) to (4.25) are satisfied. If the constraints are not satisfied, the association will be

aborted and a new iteration will be initiated. When all the constraints are satisfied, the

reward, i.e, achievable sum-rate is maximized for an AP - UE pair.

4.6.1 Action Space A

The multiple agents in the system take decisions based on the present state of the

environment. Since we are using DDPG therefore, we are considering continuous multi-

dimensional action space. Each variable in the action space involves three parameters,

transmission power (Pei
), AP - UE link bandwidth (Befi

), and association parameter

(αefi
), 1 ≤ i ≤ l where l is the size of action space for each eth LiFi AP - f th UE link.

Allocating downlink bandwidth and transmission power to the APs has a substantial

impact on the system’s possible sum-rate. Additionally, we are also determining the

affiliation of UEs with APs for downlink data reception. DDPG’s continuous action space

provides greater precision compared to DQN’s discrete action spaces. Each agent’s action

(RF and LiFi APs) represents the transmit power, bandwidth, and association parameter
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vector for each user in the system. If the user is not in LOS with the LiFi AP, their transmit

power and bandwidth is 0, and its gets associated to RF AP. The RF AP uses the actor-

network’s output to perform actions. We describe the action space parameters one-by-one:

1. The allocation strategy association parameter (αefi
): We first include the

allocation strategy into the action space. In this regard, the first parameter included

in the action space is the association parameter αefi
. The association parameter is

an indicator variable which tells the association of an AP to a UE. The association

is based on the level of SINR received. DRL agent works such that the UE gets

associated to an AP which provides the higher SINR in it FOV with load balancing.

2. Bandwidth (Befi
): Once the association parameter has been formulated, the next

issue is to find strategies for adjusting their bandwidths. Thus, the second parameter

included in the action space is the bandwidth (Befi
). It is known that CC is directly

proportional to the bandwidth. The bandwidth allocated to an RF AP is given as

(B0fi
) where as, for the LiFi AP it is given as (Befi

) such that e ∈ E\{0}. As the

available spectrum is limited, we have applied the constraint on bandwidth usage.

Similarly, like the allocation of transmit power, the CU allocates the bandwidth to

the AP by keeping the constraint satisfied. The AP provides the association to UEs

while balancing the load. Throughout this process the CU monitors the action so

that the value chosen does not exceed the maximum limit in order to achieve the

higher data rate.

3. Transmission Power (Pei
): The third parameter included in the action space is

the transmission power (Pei
). The process of maximizing the achievable sum-rate

must also consider eye safety and power saving. As we have put up a constraint on

maximum power that a CU can allocate to an AP, hence among the values of action

vector, highest value is chosen from the action vector to maximize the achievable

sum-rate.
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The action space A is thus formulated as

A = {(Pe1 , Bef1 , αef1), (Pe2 , Bef2 , αef2), . . . , (Pel
, Befl

, αefl
)}

={aef1 , aef2 , . . . , aefl
},

(4.26)

where Pe and Bef are power and bandwidth allocations, respectively, for the eth AP and

f th UE link. αef denotes the association parameter of an UE e and AP f link. These values

are scaled to match operational parameters within the environment, with Pel
constrained

within [Pmin, Pmax] and Bef l
within [Bmin, Bmax], where Pmin, Bmin and Pmax, Bmax are the

minimum and maximum permissible levels for power and bandwidth, respectively.

4.6.2 State Space

In the proposed hybrid RF/LiFi system, the state space sf provides the observation of the

agent (CU) in the environment, which includes

1. The locations of UEs and APs at an instantiation, represented by xf , yf ,APxf
and

APyf
.

2. The outcome of the action of the agent (CU) observed on the environment. The ac-

tion of CU is choosing a bandwidth, power, and association parameter. The outcome

of this action is observed on the constraints imposed on the system, represented by

C1, C2, C3, C4, C5, C6.

In [17, 31], authors have used state space as a constraint. For the environment’s state

vector, we employ the constraints along with UEs-APs location at any given moment.

The state sf for UE f can be described as [xf , yf ,APxf
,APyf

, C1, C2, C3, C4, C5, C6],

where xf , yf are the normalized coordinates of UEs f ’s location, and APxf
,APyf

are the

normalized location of the AP e serving UE f . The latter part C1 to C6 are the constraints

mentioned in (4.17) to (4.25). The rationale for choosing constraints in the state space is

that it directly affects the optimal resource allocation and data rate. Hence, the state vector
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for f users is defined as [s = s1, s2, ..., sf ], where state variable sf for user f is given as

sf = [xf , yf ,APxf
,APyf

, C1, C2, C3, C4, C5, C6]. (4.27)

Note that Cm takes values in the set {0, 1} for all m = 1, 2, . . . , 6, with a value closer to

1 indicating the degree to which it effectively satisfies the corresponding constraint. Cm

becomes zero when any of the constraints is not satisfied.

4.6.3 Reward R(s, a)

The aim of the reward function is to optimize network performance and maximize overall

achievable sum-rate. It is mathematically expressed as

R(s, a) =
∑
e∈E

re =
∑
e∈E

∑
f∈F

αefref , (4.28)

whereαef and ref are the parameters obtained after one complete inference cycle of DDPG

algorithm is completed. To use DDPG, we must define the problem in continuous state

space, action space and rewards as mentioned. In DDPG, neural networks are trained

using the set (st, at, rt, st+1).

4.7 Simulation Results

We consider the system model shown in Fig. 4.1. To assess its practicality, we utilize a

Gymnasium environment developed in Python. Simulation data are taken from [50]. The

setup includes 8 LiFi APs surrounding the RF AP arranged on the room ceiling. The area

of the room considered is 10m× 10m with specific parameters mentioned in Table 4.2.

4.7.1 Performance Analysis

We compare our proposed DDPG algorithm with PPO, twin-delayed deep deterministic

policy gradient (TD3), DQN, and double deepQ network (DDQN) on several performance
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Algorithm 2 DDPG for resource allocation in hybrid RF/LiFi System
1: Initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ
2: Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

3: Initialize replay buffer D
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at = µ(st|θµ) +Nt according to the current policy and exploration

noise
9: Execute action at and observe reward rt and new state st+1
10: Store transition (st, at, rt, st+1) in D
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from D
12: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′)|θQ′)

13: Update critic by minimizing the loss:

L = 1
N

∑
i

(yi −Q(si, ai|θQ))2

14: θQ ← θQ − α∇θQL
15: Update actor policy using the sampled policy gradient:

∇θµJ ≈ 1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

16: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ′

17: end for
18: end for

metrics. We initially opted for DQN as a benchmark because DDPG efficiently handles

continuous action spaces, unlike theDQN-based learning algorithmwhich is suited for dis-

crete actions. The evaluation is based on detailed simulations running over 2000 episodes

within a hybrid RF/LiFi system with learning rates 0.0003. It outperforms the DQN in all

the scenarios. Tomark the robustness of our proposed algorithm, we compared it with sev-

eral other mature algorithms like DDQN, TD3 and PPO. Remarkably, DDPG outperforms

all of them, i.e., PPO, TD3, DQN, and DDQN in all the metrics.

Fig. 4.2 compares the performance of DDPG, PPO, TD3, DQN, and DDQN in terms of

the achievable sum-rate (in Mbps) over the number of episodes.
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Table 4.2: Simulation Parameters

Li-Fi Parameter Values
Number of RF AP 1
Number of LiFi APs 8
Height of Room 5m
Number of UEs 8
Area of PD 1 cm2

LiFi AP average optical power 9.2 W
Noise at LiFi AP 10−21 A2/Hz
Responsivity 0.28 A/W
FOV at UE 60◦

Users Speed 0 to 0.5 m/s randomly
Area Size 10 ×10m2

Bandwidth 20 MHz
Semi-Angle of LiFi APs 70◦

Hyper-parameter Values
Number of episode 2000
Learning rate 0.0003
Discount factor 0.9
DDPG architecture Activation
Fully connected actor layer Sigmoid
Fully connected critic layer ReLU

DDPG shows consistent improvement over the episodes, with the sum-rate eventually

stabilizing at approximately 1750 Mbps. This indicates that DDPG successfully learns

to optimize the sum-rate efficiently over time. PPO demonstrates similar steady growth

as DDPG, eventually reaching a slightly lower sum-rate, stabilizing close to 1700 Mbps.

This indicates strong performance in optimizing the sum-rate, though it is slightly less

efficient compared to DDPG. This is likely because under low-noise conditions and slow

movements of UEs, DDPG achieves better performance. TD3, a variant of DDPG, per-

forms satisfactorily but remains inferior to DDPG. Although TD3 is also an actor-critic

method, it employs twin critics and target policy smoothing to reduce overestimation bias.

However, in this set-up, the state spaces and action spaces are relatively low-dimensional,

with comparatively low complexity and minimal noise. Due to this, DDPG’s simplicity

makes it perform better in this set-up. DQN exhibits high volatility, with frequent fluctu-

ations, showing instability and inconsistent improvement. Similarly, DDQN also shows

significant volatility and fails to consistently improve the sum-rate. DDPG and PPO show
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Figure 4.2: Comparison of DDPG with DQN, DDQN, PPO, and TD3 based learning al-
gorithms at learning rate 0.0003.

stable learning and convergence to higher sum-rates compared to DQN and DDQN. This

is likely due to their ability to handle continuous action spaces more effectively. Among

the algorithms, DDPG and PPO achieve the best results, indicating their suitability for the

considered large and dynamic set-up. TD3 also performs satisfactorily, however, remains

slightly behind DDPG and PPO. DQN and DDQN, being better suited for discrete action

spaces, struggle in this environment.

Fig. 4.3a compares the performance in terms of the optimal transmit power over the num-

ber of episodes. For DDPG, the transmit power fluctuates initially but stabilizes around

35 − 40 mW after approximately 500 episodes. This suggests that DDPG is relatively

stable for optimal transmit power, optimizing it in the best possible manner in this set-up.

For PPO, the transmit power initially starts at around 35 mW but reaches higher values as

the learning progresses compared to DDPG. TD3 quickly stabilizes at a transmit power of

around 70−80mW.While TD3 shows stable performance, it requires higher transmission

power. DQN displays significant volatility in transmit power, starting at around 90− 100
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Figure 4.3: (a) Convergence of DRL algorithms in terms of mean power consumption at
learning rate 0.0003.(b) Comparison of spectral efficiency vs number of episodes

mW and reducing to around 50 mW. DQN and DDQN struggle to find a stable policy

for transmission power in this set-up. This instability indicates difficulties in optimizing

transmit power, likely due to their inability to handle continuous action and state spaces.

DDPG, PPO, and TD3 shows more stable convergence. This indicates their superior abil-

ity to handle continuous action spaces. It indicates that algorithms supporting continuous

action spaces (like DDPG, PPO and TD3) are better suited for the set-up considered in this

chapter. Fig.4.3b shows spectral efficiency versus number of episodes. DDPG achieves

the highest efficiency, with PPO close behind, while TD3 converges slower with lower

efficiency. DQN and DDQN perform poorly due to their limitation to discrete state-action

spaces. Overall, actor–critic methods (DDPG, PPO, TD3) clearly outperform Q-learning-

based methods, underscoring the need for continuous state-action frameworks in dynamic

hybrid RF/LiFi systems.

Fig. 4.4 and 4.7 illustrate the variation in the achievable sum-rate as a function of the ceil-

ing height in an indoor environment. They compare the impact of different learning rates

on system performance. As expected, in both cases, the achievable sum-rate declines as

the ceiling height increases. This is likely as the channel gain is inversely proportional to

the square of the distance between an UE and an AP, causing it to decrease with increas-

ing ceiling height. Additionally, variations in learning rates influence the convergence

behavior, thereby affecting the achievable sum-rate. The results clearly show that the
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Figure 4.4: Convergence of proposed algorithm with ceiling height at learning rate 0.0003

Figure 4.5: Convergence with field of view at learning rate 0.0003.
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higher learning rate makes the convergence smoother with achieving higher sum-rate.

Figure 4.6: Convergence with field of view at learning rate 0.03

Fig. 4.5 and 4.6 show the achievable sum-rate for different values of the FOV.As expected,

increasing the FOV angle results in a reduction of the overall achievable sum-rate. This is

likely because a larger FOV allows the reception of more undesired multipath components

and background interference degrades the signal quality received at UEs. As a result, the

achievable sum-rate for a UE decreases. A narrower FOV helps in focusing more on the

desired received signal with lesser interference signals, leading to achieve higher sum-rate

and vice-versa.

Furthermore, it can be observed that the proposed DDPG algorithm consistently outper-

forms the DQN in terms of achievable sum-rate. This superior performance of DDPG is

due to its ability to handle continuous action spaces more effectively. In contrast, DQN

suffers because it relies on discrete action spaces.
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Figure 4.7: Convergence of proposed algorithm with ceiling height at learning rate 0.03

4.8 Conclusion

In this chapter, we investigate our proposed DDPG method for resource allocation in dy-

namic and hybrid RF/LiFi systems. Remarkably, we created a near-realistic scenario envi-

ronment using Gymnasium. The proposed algorithm was compared with several mature

DRL algorithms that support both the discrete and continuous action and state spaces.

Simulation results show that DDPG outperforms all of them. Also, with it’s capability

to handle continuous action space, DDPG shows 62.8% better performance than DQN in

terms of achievable sum-rate and 42.8% in terms of optimal transmit power.
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Chapter 5

A2C and PPO with Random orientation

in Hybrid RF/VLC

As mentioned earlier, VLC has emerged as a promising technology, delivering high-speed

data transmission for 5G and beyond communication. Nevertheless, its susceptibility to

blockages demands a co-deployment with traditional RF systems to ensure uninterrupted

connectivity. This co-deployment, known as a hybrid RF/VLC system, is a subset of Het-

Nets and offers interoperability, energy efficiency, and optimal resource utilization. In

hybrid RF/VLC, efficient resource allocation and load balancing are crucial. In previous

chapters, it was discussed that existing DQN learning-based methods designed to address

these issues, fail in large and dynamic environments. In this chapter, we further investigate

alternative approaches for optimal resource allocation and load balancing in dynamic and

large hybrid RF/VLC systems, to achieve maximum data rates for users. Additionally, we

take random orientation of UEs into account. We propose two model-free on-policy DRL

based schemes, namely A2C and PPO, for efficient resource allocation in this set-up. Sim-

ulation results show that the A2C and PPO based schemes outperform the DQN learning

scheme by 31.3% and 32.5%, respectively, in terms of data rates. The proposed schemes

also outperform DDPG in data rate maximization by up to 8.1% and 9.7%, respectively.
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5.1 Overview

The recent CISCO report indicates 29.3 billion internet users and network devices world-

wide [3]. Due to RF spectrum limitations, alternative wireless communication using unli-

censed optical spectrum, like VLC, has gained prominence, especially for indoor use [21].

VLC is energy-efficient, offers illumination, data transmission, positioning, and is im-

mune to RF interference, making it suitable for sensitive environments [132]. Standalone

VLC deployment is impractical due to its susceptibility to blockages. Its co-deployment

with RF creates a hybrid RF/VLC system. Hybrid RF/VLC is a part of HetNets, that can

enhance capacity, mobility, and energy efficiency [32]. Optimal resource allocation in

these systems remains a key research focus [17, 20]. Particularly in downlink resource al-

location, non-concavity involved in the joint optimization problem of the downlink band-

width, transmission power of the APs, and the integer association parameter is a crucial

issue [21].

Several classical optimization algorithms have been proposed in the existing literature

[22, 20, 23, 24, 25, 133, 26, 134] to address the dual issues of non-concavity and integer

optimization. However, conventional optimization mechanisms often rely on assuming

values for at least one of the optimization parameters and finding the best values for the

remaining parameters [27]. Notably, as the optimization parameters jointly impact the

data rate, their joint optimization incorporating the interplay between them is necessary

without making any presumptions on their values. The assignment of downlink power

and bandwidth has a direct impact on SINR, and vice versa. Presuming a value for the

downlink bandwidth, AP transmit power, or association parameter results to suboptimal

outcome.

Deep learning, a subset of machine learning, has been found efficient in solving prob-

lems involving integer optimization or combined optimization of multiple variables [17]

and for optimal resource allocation in hybrid RF/VLC [17, 29, 31]. In [17], the authors

have used DQN learning to solve the joint optimization problem of association parameter,

bandwidth and transmission power. Wang et al. in [29] use deep learning for seamless
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Table 5.1: Related Works

Parameter Proposed Approach Pros Cons
Optimization of transmit
power [30], transmit power
and user scheduling [32]

Distributed DRL - DDPG
[30], actor-criticmodel-free
[32]

Better performance, adapt
changes [30], renewable
energy harvesting [32]

Higher implementation
complexity [30], no load
balancing [32]

Achievable sum-rate [31],
[17], [135]

DQN-transfer learning
[31], DQN [17], limited-
content and limited-
frequency feedback [135]

High data rate and fewer
number of iterations [31],
moment to moment update
[17], both downlink and up-
link [135]

No load balancing, off-
policy [31] [17], fixed
bandwidth and average
power [135]

EE [33], [22], [23], [50],
[34], EE and spectral effi-
ciency (SE) [25],

DRL[33], Dinkelbach’s
algorithm, successive con-
vex approximation [22],
ϵ-constraint method [23],
Dinkelbach-type procedure
[50], iterative joint user
association and power
control [25], DRL [34]

Enhanced QoS [33], im-
proved cell edge user ex-
perience [22], LOS block-
ages and intercell interfer-
ence [23], power and band-
width efficient allocation
[50], high EE and SE [25],
both uplink and downlink
[34]

No load balancing and
random orientation [33],
interference and no load
balancing [22], convexity,
sum-rate and power trade-
off [23], no association
parameter and load balanc-
ing[50], no load balancing
[25] [34]

Maximization of propor-
tional fairness[20], outage
probability [35]

Dual decomposition
method-Karush-Kuhn-
Tucker [20], deep learning
[35]

Increased fairness [20], dy-
namicity and human block-
ers consideration [35]

Time and bandwidth equal
allocation [20], no random
orientation and no load bal-
ancing [35]

Seamless handover pro-
tocol and data-rate [29],
resource allocation and
load balancing with han-
dover [136]

DRL [29], game theory and
OFDM Access resource al-
location [136]

Increased data-rate [29],
random orientation [136]

Fixed movement path, no
load balancing [29], no
bandwidth and power con-
straints [136]

Secrecy capacity [36] [37], DQN [36], DDPG [37] Enhanced secrecy capacity
reliable data rate [36] [37],

No random orientation and
load balancing [36], [37]

handover and increased downlink data rate in an ultradense deployment of VLC APs.

DRL based solutions have been used against the heuristic methods to improve the stabil-

ity and optimize the transmit power [30]. In [31], transfer learning has been proposed for

performing optimal resource allocation to maximize the data rate.

Although, the primary goal of these works is sum-rate maximization, the DQN algorithms

[17, 31] struggle with efficiency in large, dynamic environments due to the expansive ac-

tion space and off-policy nature [32]. The increasing number of UEs and their dynamism

further expand the action space. Since DQN operates as an off-policy algorithm, it uses

the experience replay to learn and has no agent to pick the actions. Thus, it learns from

recorded sessions and performs suboptimally. Further, off-policy DRL [29, 30], which

works with discrete action spaces, faces challenges in large areas as continuous action

spaces need to be converted to discrete ones, introducing high quantization noise. In con-

trast, on-policy algorithms, where agents select their own actions, offer better stability and

performance by usingmultiple agents learning in parallel [137]. On-policy algorithms also

handle practical considerations like random orientation of UEs in a more efficient manner.
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In this chapter, we investigate the use of on-policy DRL algorithms, specifically A2C

and PPO. These algorithms handle both discrete and continuous action spaces, making

them suitable for optimization in large, dynamic setups. A2C and PPO use a model-

free DRL approach to solve non-concave optimization problems in hybrid RF/VLC sys-

tems, efficiently managing large, dynamic conditions and expanding action spaces. These

policy-based methods allow multiple agents to learn in parallel by interacting with the en-

vironment, optimizing all variables simultaneously. Additionally, they offer better sample

complexity and ease of implementation [138].

5.2 Chapter Contributions

Our main contributions in this chapter are as follows:

1. Practicality of the set-up and the problem: We consider optimization in a dynamic

20× 20 meter hall with variable speed users and random device orientations.

2. Deep Learning model for a large hybrid RF/VLC setup: We develop a model-free

DRL communication model for optimizing UE-AP connectivity.

3. Development of deep learning framework: A multi-objective optimization frame-

work for maximizing the sum-rate by optimizing association parameters, transmis-

sion power, and downlink bandwidth subject to various constraints has been intro-

duced for a large and dynamic system.

4. Incorporating load balancing: We formulate a comprehensive set of constraints

that incorporates load balancing along with minimum SINR requirements, transmit

power limitations, bandwidth considerations, and association parameters.

The rest of the chapter is organised as follows: Section 5.3 illustrates systemmodel,

the proposed mechanism to solve the optimization problem is discussed in Section

5.4. Section 5.5 discusses the performance of proposed schemes and Section 5.6

concludes the chapter.
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5.3 System Model

Figure 5.1: Hybrid RF/VLC Environment

Let N denote the set of VLC and RF APs in a 20 × 20 meter hall. The system model

includes |N | − 1 VLC APs and 1 RF AP, all on the ceiling. A CU near an RF AP dy-

namically manages the network. If a UE only receives NLOS components from a VLC

AP, it connects to another VLC AP or the RF AP with the maximum SINR. The CU han-

dles bandwidth allocation, transmission power control, and UE-AP association. APs are

indexed as i = 1, 2, . . . , |N |, with VLC APs as i = 1, 2, . . . , |N | − 1 and the RF AP as

i = 0. APs are at height h from the UEs, which are indexed as j = 0, 1, 2, . . . , |U|.

5.3.1 VLC System Modeling

According to [50] the optimal channel gain CGv
ij , in LOS signal for VLC is given as
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Figure 5.2: Downlink geometry in LOS-NLOS scenario with polar and azimuth random
orientation angle of UE in VLC Environment

CGv
ij = (m + 1)Apdcosmθij cosϕijTopt(ϕij)g(ϕij)

2πd2
ij

, (5.1)

where Topt(ϕij) is the optical filter gain (constant or unity within the receiver’s FOV), θij

is the incidence angle at UE j from AP i, ϕij is the irradiance angle at AP i, and dij is the

distance between UE j and AP i.

The concentrator gain g(ϕij) in (5.1) is written as

g(ϕij) =


n2

sin2ϕFOV
if 0 ≤ ϕij ≤ φFOV

0 if ϕij > φFOV,

(5.2)

where φFOV is the FOV angle of the UE, n is the refractive index, and the order of the

Lambertian radiation profilem is given as
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Table 5.2: Important notations and their meanings

Notation Meaning
i Index of APs
j Index of UEs
k The interferer AP index
rij The achievable data rate between the ith AP and the jth UE
ri Downlink data rate of the ith AP
BVLC
max Maximum BW allotted to VLC AP

BRF
max Maximum BW allotted to RF AP

Pi Transmit power of the ith AP
Pt Total optical power received from an AP
N Set of APs
U Set of UEs
m Lambertian coefficient
θ Angle of incidence
ϕ Angle of irradiance
CG(l) DC Channel gain after lth reflection
Apd Area of PD
CGij Channel gain between ith AP and jyh UE
CC Channel capacity
BRF
max Maximum bandwidth allotted to the jth UE by the ith AP

ρj Responsivity of the receiver PD
℧ij Indicator function showing association of AP i-UE j
N r

0 RF noise power
N v

0 VLC noise power
P RF
max Maximum transmit power of the RF AP
PVLC
max Maximum transmit power of the VLC AP

m = − ln 2
ln cosϕ1/2

, (5.3)

whereϕ1/2 is semi-angle at half illuminance. In a typical indoor scenario, some transmitted

light components get reflected from the walls and are received by the photo diode. For

such NLOS light components, the channel gain is given as [139]

CGNLOS =
∞∑
l=0

CG(l), (5.4)

where l represents the reflection index, and the source LED exhibits channel gain CG(l)
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after lth reflection which is further expressed as

CG(l) =
∫
S
CG1CG2 . . . CGl+1OP

(l)
q dAs, (5.5)

where dAs represents the tiny area of reflection surface, while OP (l)
q is the optical power

of the light ray component after undergoing l reflections emitted from the qth transmitting

VLC AP. CG1, CG2, . . . , CGl+1 are the DC channel gains of each traced path for the

reflected component expressed as [139], [116]

CG1 = (m+1)As

2πd2
1

cosm(θ1) cos(ϕ1), CG2 = As

πd2
2

cosm(θ2) cos(ϕ2),

. . . , CGl+1 = As

πd2
p+1

cosm(θl+1) cos(ϕp+1)Ts(ϕl+1)g(ϕl+1),
(5.6)

where As is the area of the wall where incident light hits, θi and ϕi for i = 1, 2, . . . , l + 1

are the angles of irradiance and incidence at the l reflections.

The random orientation of UEs due to users’ angular hand movements impacts θij , making

it a random variable [135, 136]. This effect can be characterized using the polar angle ψ

and azimuth angle ω, as shown in Fig. 5.2. The statistics of the LOS depend on UE

orientation. In (5.1), ϕij remains unaffected by random orientation and is expressed as

cosϕij = −nu · dij

|dij|
, (5.7)

where nu is the UE’s normal vector. Considering random orientation, the UE’s normal

vector nu in the Cartesian coordinate system is defined as [135]

cos θij = nu.dij

dij
=
(
xn − xu

d

)
sinψ cosω +

(
yn − yu

d

)
sinψ sinω +

(
zn − zu

d

)
cosψ,

(5.8)

where [xn, yn, zn] and [xu, yu, zu] denote the position vector of AP and UE, respectively,

dij is the distance vector between VLCAP and UE. For simplicity of notation dij is written

as d. For simplification, we can rewrite (5.8) as

g(ψ) = cos θij = a sinψ + b cosψ, (5.9)
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where

a = −
(
xn − xu

d

)
cosω −

(
yn − yu

d

)
sinω, (5.10)

and

b =
(
zn − zu

d

)
. (5.11)

The probability density function of cos θij , approximated with truncated Laplace distribu-

tion, is given as

f̃cosθij
= 1

∆
(
µ̂ψ, b̂ψ, τ̂max

)exp(−|τ̂ − µψ|
b̂ψ

)
, (5.12)

where τ represents the realization of the random variable cos θij , and

∆(µ̂ψ, b̂ψ, τ̂max) = 2b̂ψ
(

1− 1
2

exp
(
µ̂ψ − τ̂max

b̂ψ

)
− 1

2
exp

(
−1− µ̂ψ

b̂ψ

))
(5.13)

with f̃cos θij
in the support range of −1 ≤ τ̂ ≤ τ̂max, µ̂ψ = a sinµψ + b cosµψ, and

b̂ψ = bψ |a cosµψ − b sinµψ|.

The total optical power received Pt from a single LED includes the LOS and NLOS com-

ponents, and is expressed as

Pt = (CGNLOS + CGv
ij)Pi = CGijPi for i ∈ N\{0}, (5.14)

where Pi is the power transmitted by the VLC AP i and CGij = CGNLOS + CGv
ij is

the effective channel gain between AP i and UE j for i ∈ N\{0}. The experimental

evaluations use mean Pi, which is Pi averaged over f̃cos θij
. Also, LEDs emit light with

wavelength λ and their spectral power distribution is given as Pi(λ). Thus, Pi and Pt are

given as

Pi =
∫
λ
Pi(λ)dλ, (5.15)

and

Pt =
∫
θij

Pt(θij)f̃cos θij
dθij. (5.16)
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5.3.2 Radio Frequency Channel Model

We consider RF signal transmission in the 60 GHz wideband region having an orthogonal

frequency division multiplexing (OFDM) bandwidth BRF [140]. The channel between

the UE and RF AP is modelled as

CGk =
√

10−L(dr)/10CGn
w, (5.17)

where CGk is the complex channel transfer function between the kth sub channel and

serving RF AP, and the separation distance is dr the corresponding large-scale fading loss

L(dr) in dB is given by [141]

L(dr) = L(do) + 10γ log10(d/do) +X, (5.18)

where at a distance of do = 1 m, the reference path loss L(do) is 68 dB. The path loss

exponent is γ = 1.6, and the shadowing component X follows a Gaussian distribution

with a mean of zero and standard deviation σ = 1.8 dB [142].

Note that in LOS propagation, the channel transfer function is given as

CG0j =
√

10−L(d)/10

√ K

1 +K
CGd +

√
1

1 +K
CGs

 , (5.19)

CGd =
√

1/2(1 + j) represents the direct path fading channel, while the scattered path

fading channel is modeled as a complex Gaussian random variable, CGs ∼ CN (0, 1).

Here, j denotes the imaginary unit. The Rician factorK is set to 10 dB [141].

5.3.3 Communication Model

Let X = [x0, x1, . . . , x|N |] be the signal vector transmitted by the VLC APs and RF AP.

When UE j is associated to the RF AP i = 0, it will receive the signal y0j represented as

y0j =
√
CG0jPRF × x0 +N0

r, (5.20)
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where N0
r is the AWGN.

Conversely, if UE j is associated with a VLC AP i such that i ∈ N\{0}, yij will be

represented as

yij = ρjCGijPixi +
∑

k∈N \{0}
ρjCGkjPkxkDk(℧kj′) +N0

v, (5.21)

where ρj is the responsivity of the receiving PD at the UE j, N0
v accounts for both the

shot noise and thermal noise, and Dk(℧kj′) =
(
1−∏j′∈N \{0} (1− ℧kj′)

)
, where ℧kj′

represents an indicator function indicating the association of the AP k with UE j′ such

that

℧kj′ =


1 if AP k is associated to UE j′

0 otherwise,
. (5.22)

In (5.21), we assume ℧ij = 1 to indicate that UE j is connected to AP i. The desired

combination is the AP i - UE j pair, while AP k interferes at UE j. The parameterDk(℧kj′)

ensures that AP k transmits only if it is associated with at least one UE j′, where j′ ̸= j.

If AP k is idle and not transmitting to any UE,Dk(℧kj′) = 0, indicating it is switched off.

5.3.4 Achievable Data Rate

When a UE connects to an RF AP, CC follows the Shannon’s formula. For association

with a VLC AP using IM/DD, the CC is lower-bounded [119] as

CC = 1
2
B log2

(
1 + w

ρ2P 2
t

σ2

)
, (5.23)

where w = e/2π, ρ is the responsivity, B denotes the modulation bandwidth, and σ2 the

Gaussian distribution noise power.

Following (5.20), (5.21), and (5.23), we express the instantaneous achievable data rate at
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the UE j as

rij =


B0j log2 (1 + SINRr) , for i = 0

1
2Bij log2 (1 + wSINRv) , for i ∈ N\{0},

(5.24)

where SINRr and SINRv are lower bounds for RF and VLC respectively and are given

as
SINRr = PRFCG0j

N0B0j
, and

SINRv = CG2
ijP

2
i

Nv
0Bij+

∑
k∈N \{0} ρjCG2

kj
P 2

k

(
1−
∏

j′∈N \{0} (1−℧kj′ )
)2 ,

(5.25)

where Bij is the bandwidth of the AP i - UE j link. Based on the (5.24) the expression of

throughput of AP i can be expressed as

ri =
∑
j∈U

℧ijrij. (5.26)

5.3.5 Problem Statement

Our objective is to find the optimal ℧ij , Bij and Pi ∀ i, j for achieving maximum ri. The

formulation of resource allocation problem is as follows

P : max
Bij ,Pi,℧ij

ri, for i ∈ |N |, j ∈ |U|, (5.27)

subject to constraints:

C1 :
∑
j∈U

℧ijBij ≤ BVLC
max , for i ∈ N\{0}, (5.28)

where BVLC
max denotes the maximum bandwidth allocated to the VLC AP. Similarly,

C2 :
∑
j∈U

℧ijBij ≤ BRF
max, for i = 0, (5.29)

as it is known that available RF bandwidth is very low and expensive as compare to VLC.

We have to exploit the available resources optimally. Therefore, this constraint ensures
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that the maximum bandwidth allocated to the RF AP should not exceed the BRF
max. Simi-

larly, constraint is imposed on the transmission power considering eye safety and power

budget, the constraint on VLC AP for maximum power is given as

C3 : 0 ≤ Pi ≤ PVLC
max , for i ∈ N\{0}, (5.30)

a similar constraint on maximum transmission power of RF AP is formulated as follows

C4 : 0 ≤ P0 ≤ P RF
max, for i = 0, (5.31)

and a constraint has been considered on SINR to achieve reliable communication as

C5 : SINRij ≥ γij, for i ∈ N , j ∈ U . (5.32)

When equality is achieved in (5.32), then the subsequent conditions are derived to avoid

SINR constraint violation [17]

1−∑i∈N
∑
j∈U ζij > 0, and∑

i∈N
∑
j∈U κiζi ≤ 1,

(5.33)

where

ζij =
(

1 + 1
γij

)−1

, and (5.34)

κij = N0Bij

(CGijPi/γij)−N0Bij

+ 1. (5.35)

If one AP offers high SINR, many UEs may associate with it, lowering individual data

rates. To balance the load, a constraint limits the number of UEs per AP to u as

C6 : ui ≤ u, (5.36)

where ui is the number of UEs associated to APi.

The constraint in (5.32) ensures the minimum SINR for reliable AP-UE communication,

83



CHAPTER 5. A2C AND PPO WITH RANDOM ORIENTATION IN HYBRID
RF/VLC

Figure 5.3: a) Flowchart of the proposed DRL network (b) Actor and critic stages of PS1
algorithm (c) Actor and critic stages of PS2 algorithm.

preventing interference from other APs. If interference violates this constraint, the DRL

mechanism adjusts AP transmission power to comply. Constraints (5.33), (5.34), and

(5.35) are designed to satisfy (5.32). Failure to meet these constraints results in AP inter-

ference.

The problem in (5.27) is a jointly non-concave integer optimization problem in ℧ij , Bij ,

and Pi, which conventional algorithms can’t solve without presuming values. We apply

A2C and PPO DRL algorithms to solve (5.27) subject to constraints (5.28)-(5.36).

5.4 Proposed Mechanism to solve P

To solve the problem P in (5.27), we propose two on-policy model-free DRL techniques

namely A2C and PPO.

5.4.1 Framework

We propose using A2C and PPO for resource allocation in a dynamic hybrid RF/VLC sys-

tem. These policy gradient methods update policy parameters step-by-step to optimize the
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problem in a continuous action space. Given the stochastic dynamic environment in (5.27),

policy-based approaches perform better by avoiding quantization noise, which causes os-

cillation and non-optimal convergence in discrete spaces. Both mechanisms operate on

continuous state and action spaces, S and A.

5.4.1.1 Action Space A

In this study, the action space is a continuous multi-dimensional space where each dimen-

sion corresponds to the control parameters for a single VLC AP. For a network with n

VLC APs, the action a is represented as:

A = {(Pi1 , Bij1 ,℧ij1), (Pi2 , Bij2 ,℧ij2), . . . , (Pin , Bijn ,℧ijn)}

={aij1 , aij2 , . . . , aijn},
(5.37)

where Pijl ∈ [Pmin, Pmax] and Bijl ∈ [Bmin, Bmax] represent the power and bandwidth

allocation for each AP-UE link, respectively. Values for Pi and Bij are scaled to match

operational parameters, with Pmin, Pmax andBmin, Bmax being the minimum and maximum

permissible levels.

5.4.1.2 State Space S

State space primarily consists of two parts. The former part consists of the dynamics of the

user, namely its location and speed of motion. The latter part shows the satisfaction of the

constraints (5.28)-(5.36) resulting from the actions in (5.37). For u users in the network,

the state s can be described as [s = {s1, s2, . . . , su}] with each user state sj given as

sj =
[
xj, yj, vxj

, vyj
, APxj

, APyj
,C
]
, (5.38)

where xj, yj are normalized coordinates of user j, vxj
, vyj

are its normalized velocity com-

ponents, APxj,APyj are normalized AP locations serving UE j, andC = [C1, C2, ..., C6],

where C1 to C6 represent constraints (5.28)-(5.32) and (5.36). Each Cm ∈ 0, 1 indicates

the degree to which its respective constraint is satisfied; Cm approaches 1 when the con-
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straint is well-satisfied. If any constraint is not met, the correspondingCm is set to 0. Note

that C is common for all UEs.

5.4.1.3 Reward Function

The reward function R(s, a) aims to optimize network performance by satisfying all con-

straints andmaximizing the achievable sum-rate. If every constraint variable in state space

is non-zero (Cm ̸= 0), the reward is received in terms of the achievable sum-rate as

R(s, a) = ri, (5.39)

further if any Cm = 0, a value lower than the current R(s, a) is returned to the CU.

As it can be seen in (5.39), the data rate of each individual ith AP (ri) is first maximized.

During this maximization, the constraint C6 ensures that the number of UEs associated

to an AP do not exceed a particular value. Thus, one AP is not crowded with UE con-

nections and load balancing is ensured across all the APs. Since there is an interference

term in the Shannon’s capacity formula, the maximization of an individual ith AP takes

into account the other APs also. Simultaneously there is a constraint on SINR. Thus, UEs

are not associated to an AP only for the sake of reaching the upper bound allowed for

that AP. Once the data rates of all the APs is maximized, the sum of all the data rates,

R = ∑N
i=1 ri is considered as sum-rate. The sum-rate is calculated in the last step of the

algorithm. Therefore, for all the evaluations in the simulation section, the sum-rate has

been considered.

5.4.2 A2C based Proposed Scheme 1 (PS1)

PS1 combines policy and value-based methods using two neural networks: the actor and

the critic. These networks operate on state space S and action spaceA. The actor observes

the environment and selects actions a ∈ A to maximize rewards, while the critic evaluates

the policy and computes rewards/penalties using temporal difference (TD) error and the

advantage function based on received rewards.
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Algorithm 3 Implementation of PS1
1: Initialize Actor network with weights θ.
2: Initialize Critic network with weights ϕ.
3: Initialize Controlling Unit (CU).
4: Initialize discount factor γ.
5: Initialize learning rates αθ, αϕ.
6: for each episode do
7: Initialize system state s = {s1, s2, . . . , su} from CU
8: Initialize episode reward R = 0
9: for each step in episode do
10: Choose an action a ∈ A based on πθ(a|s)
11: Take action a, update system state to s′ and receive reward R
12: Update s′ in CU
13: Compute TD error A = r + γVϕ(s′) − Vϕ(s) and advantage A(s, a) = Q(s, a) -

V(s)
14: Update θ using A to optimize the policy:

θ ← θ + αθ∇θ log πθ(a|s)A

15: Update ϕ to minimize mean square error (MSE) = (r + γVϕ(s′)− Vϕ(s))2:

ϕ← ϕ− αϕ∇ϕMSE

16: s = s′

17: Aggregate rewards R
18: end for
19: Store R for performance evaluation.
20: if convergence criteria met then
21: Break
22: end if
23: end for
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For any given state s ∈ S , the actor network generates an action a ∈ A, to maximize

the expected return J(π), defined as J(π) = Eτ∼π [∑∞
t=0 γ

tR(st, at)], where, τ is a tra-

jectory, γ is the discount factor, and R(st, at) is the reward at time t. For each state s

the critic estimates the value function V (s) as V (s) = Ea∼π [∑∞
t=0 γ

tR(st, at)|s0 = s] .

To address high variance in policy gradient methods, the critic computes the advantage

function A(s, a) = Q(s, a)−V (s), whereQ(s, a) is the action-value function, defined as

Q(s, a) = Eπ
[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
. (5.40)

Both the actor and critic networks are updated iteratively. The critic with stochastic gra-

dient descent and the actor to maximize J(π) + λA(s, a). The critic aims to minimize

the TD error for better estimates of value-function. This leads the policy towards bet-

ter advantage function estimate and better convergence. The next state value function is

denoted as V (s′) and the TD error is given as δ = R(s, a) + γV (s′)− V (s).

The CU uses the PS1 algorithm to optimize resource allocation for each VLC AP, aim-

ing efficient serving and maximize data rates. The actor neural network selects optimal

actions for power, bandwidth, and association parameters based on the system’s current

state vector S .The critic network updates value function estimates based on these actions,

refining future decisions. Guided by a multi-objective reward function R, this iterative

process ensures effective resource utilization and data rate maximization, while ensuring

the hybrid RF/VLC system approaches an optimal state, maximizing the expected return

J(π) over time.

5.4.3 PPO based Proposed Scheme 2 (PS2)

The PS1 algorithm can cause drastic policy updates that may hinder learning. To avoid

this, we propose PS2, known for its efficiency and stability in complex environments.

Like PS1, PS2 uses (5.40) to calculate the action-value function. However, PS2 improves

stability by using a clipping approach to constrain policy updates, ensuring consistency

with the old policy. This method creates a surrogate objective function and takes small
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Algorithm 4 Implementation of PS2
1: Initialize Actor network with weights θ and old weights θold = θ.
2: Initialize Critic network with weights ϕ.
3: Initialize Controlling Unit (CU).
4: Initialize discount factor γ.
5: Initialize learning rates αθ, αϕ.
6: Initialize clipping parameter ϵ.
7: for each episode do
8: Initialize system state s = {s1, s2, . . . , su} from CU
9: Initialize episode reward R = 0
10: for each step in episode do
11: Choose an action a = [a1, a2, . . . , an] based on πθ(a|s)
12: Take action a, update system state to s′ and receive reward R
13: Update s′ in CU
14: Compute Advantage A = r + γVϕ(s′)− Vϕ(s)
15: Calculate policy ratio rt(θ) = πθ(a|s)

πθold (a|s)
16: Update θ using clipped objective:

θ ← θ + αθEt [min (rt(θ)A, clip(rt(θ), 1− ϵ, 1 + ϵ)A)]

17: Update ϕ to minimize MSE = (r + γVϕ(s′)− Vϕ(s))2:

ϕ← ϕ− αϕ∇ϕMSE

18: s = s′

19: Aggregate rewards R
20: end for
21: θold = θ
22: Store R for performance evaluation.
23: if convergence criteria met then
24: Break
25: end if
26: end for
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steps for optimal convergence. The optimization of the PS2 objective function is given as

LCLIP (θ) = Et
[
min

(
Rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (5.41)

where rt(θ) represents the ratio of the probability of an action under the new and old

policies. Ât is the advantage function estimator at time t and ϵ is the hyperparameter

limiting policy change in a single update.

In the present system, the CU employs PS2 to determine optimal actions based on the state

of the VLC APs. Each action, similar to the PS1 approach, signifies specific configura-

tions like power, bandwidth, and association parameter for every VLC AP.

5.4.4 Network Time and Training Complexity Discussion

In this section, we perform an analysis of the complexity of the proposed schemes.

5.4.4.1 Network Time Complexity

To assess the complexity of value or policy functions, we categorize them as either critic-

only (DQN) or actor–critic (DDPG, PS1, PS2). Let k represent the feature size of the

traffic state and a the action space size.

Each network consists of L+ 2 hidden layers withm neurons. An empirical study [143]

suggests optimal neuron counts of 128 or 256 with hidden layer depths of two or three.

The time complexity for DQN is given byO(km+Lm2 +ma) = O(Lm2 + (k+ a)m).

Both DQN and policy gradient methods share this complexity. For DDPG, PS1, and PS2,

the time complexity of separate critic and actor networks is O(Lm2 + (k + a)m). Since

m is much larger than a, k, and L, and comparable to N , the time complexity for DQN

and DDPG simplifies to O(Lm2), while for PS1 and PS2, it is O(2Lm2).

5.4.4.2 Training Complexity

DRL algorithms use on-policy (PS1, PS2) or off-policy (DQN, DDPG) strategies. Let d1

and d2 be update steps for off-policy and on-policy methods, respectively, with b epochs
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Table 5.3: Complexity for different DRL algorithms

Algorithm Network time
Complexity

Training
Complexity
(forward)

Training
Complexity
(backward)

DQN O(Lm2) O(d+ 2bf1) O(bf1)
DDPG O(Lm2) O(d+ 2bf1) O(2bf1)
PS1 O(2Lm2) O(d+ bf2) O(2bf2)
PS2 O(2Lm2) O(d+ 2bf2) O(4bf2)

per model update. The simulation steps per episode are d = T
∆t , with update frequencies

f1 = T
d1∆t (off-policy) and f2 = T

d2∆t (on-policy). The replay buffer capacity is C.

Typically, d1 < d2 as on-policy methods require longer sampling. For on-policy, buffer

capacity matches d2, while off-policy methods sample until convergence.

Training involves forward and backward passes. For DQN and DDPG, the forward pass

is O(d + 2bf1), with backward complexity of O(bf1) and O(2bf1). For PS1, forward

and backward passes are O(d + 2bf2) and O(2bf2), respectively. PS2 has a backward

complexity of O(4bf2). Generally, d≫ b, f2 and is comparable to 10bf1.

5.4.5 Floating Point Operations (FLOPs)

For a DRL agent, the time complexity for one forward and one backward pass can be

describe in metric of FLOPs [144]. The number of FLOPs for forward pass Nfor is given

as

Nfor ≈ (αm + 1)
L∑
l=1

nlnl−1. (5.42)

The number of FLOPs for backward pass Nback is given as

Nback ≈ ntrn (αm + 1)
L∑
l=1

nlnl−1, (5.43)

where αm denotes the number of FLOPs of one multiplication operation, nl and nl−1 are

the input and output neurons in lth layer. L is number of layers with training samples ntrn

and number of epochs ne.
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5.4.6 Dynamic Bandwidth Allocation

The number of UEs associated with each VLC AP will change dynamically. Note that

quasi-static period is the time span for which a specific number of UEs are associated with

an AP. As the UEs move around dynamically, this number of UEs likely to change. Thus,

the change in this number depends on the motion of the UEs. The user speed produces

a Doppler shift. This Doppler shift gives us a coherence time Tc. Tc is the time span for

which a specific number of UEs are associated to an AP. Thus, considering the dynamics

of the system under consideration, Tc comes out nearly equal to 373 ms for sitting and 134

ms for walking [135].

The fundamental requirement for our proposed schemes to be successful is that Tc must be

more than the execution time for one iteration of the neural network, Tnn. When Tc > Tnn,

the execution of the DRL algorithm will be completed within the time span in which a

specific number of UEs is associated with an AP. Thus, the bandwidth allocation will be

done within Tc time span. We calculate Tnn with FLOPs. When we put the values in above

expression (5.42) and (5.43), when L=4, αm=1, epochs or episodes = 5000, ntrn = 100.

Some of the values are taken from [144], we get Tnn around 57 ms which is much less than

Tc. Hence, during the quasi-static period, the channel state information (CSI) is constant

[145]. In indoor environments, both VLC and RF channels maintain constant CSI for a

short duration called Tc. So atleast for that time the UE will be associated to an AP.

5.5 Performance Evaluation

The experimental simulation set-up discussed in the system model has been created using

python language in the gymnasium environment. For practicality, the simulation environ-

ment is assumed to be dynamic with UEs randomly orientated. PS1 and PS2 have been

compared with the DDPG and DQN based algorithms as benchmarks. Notably, DDPG

and DQN are state-of-the-art techniques, that have been used in the latest available works

aligning with our objective in this work [30, 17, 37, 33, 36]. Additionally, the proposed al-

gorithms are also compared with optimization algorithms such as epsilon-greedy, random
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and ES.

The details of simulation parameters, some of which are taken from [50], have been men-

tioned in Table 5.3 and the set-up is shown in Fig. 5.3.

5.5.1 Baseline Strategies

The DDPG (DRL based approach) algorithm, DQN algorithms, epsilon-greedy and ES

are explained as follows:

5.5.1.1 DDPG and DQN based algorithms

DQN learning is suitable for discrete action space. However, PS1 and PS2 can efficiently

handle continuous state and action space. Thus, we use continuous action space DRL tech-

nique DDPG as a benchmark. Both DDPG and DQN uses experience replay and hence

are more sample efficient. However, due to this they can diverge from current policy and

are less stable. DQN may handles complex scenarios but it depends on quantization to

support discrete action spaces. Quantization hinders its ability to find an optimal policy.

DDPG operates in a continuous action space, effectively avoiding the limitations of quan-

tization noise and leading to an optimal policy. DDPG combines Q-learning and policy

gradient methods. However, DDPG is highly susceptible to hyperparameters tuning. Sim-

ilar to PS1 and PS2 architecture, it also has actor-critic approach and supports continuous

state and action spaces. DQN and DDPG uses explicit exploration and less exploitation as

both of them uses experience replay. PS1 and PS2 strategies have much more exploration

than exploitation, and in PS2 the clipping ensures both stable exploitation and controlled

exploration.

5.5.1.2 Exhaustive Search

ES, or brute force search, is a simple algorithm that finds solutions by checking all pos-

sible options within given constraints. It guarantees the best solution. Thus, it has been

considered as a benchmark. However, it may be impractical for large action spaces due to

its exponential time complexity.
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Table 5.4: Simulation Parameters

Hybrid RF/VLC environment parameter Values
Number of RF APs 1
Number of VLC APs 12
Number of UEs 10
Area of Photodiode 1 cm2

VLC AP Average Optical Power 9.2 W
RF Transmit Power 100.0 mW
VLC Transmit Power 10.0 mW (for each VLC AP)
Noise at VLC AP 10−21 A2/Hz
Responsivity 0.28 A/W
FOV at UE 60◦

Order of Lambertian 1.2
Users Speed 0 to 1.5 m/s randomly
Area Size 20 × 20 m2

Frequency Range 2400 to 2500 MHz
Semi-Angle of VLC APs 70◦

Hyper-parameters Values
Number of epochs 5000
Learning rate 0.01, 0.03, 0.0003
Discount factor 0.99
Number of steps 200
Mini batch size 64
Clipping range for PS2 0.2

5.5.1.3 Epsilon - greedy

Epsilon - greedy is a simple reinforcement learning method. It balances the exploitation

and exploration trade off between the random action taken with probability ϵ, and the

action with the highest known reward (greedy choice) with probability 1− ϵ. However, in

large action spaces it might yield suboptimal results and converge slowly due to constant

ϵ value and randomness that may not adapt well as it spends a significant amount of time

on random exploration. Note that in results epsilon-greedy is written as Epsilon-G.

5.5.2 Hyperparameters

The hyperparameters for training include epochs, learning rate, discount factor, steps,

mini-batch size, and PS2 clipping rate. An epoch is a full pass through the dataset up-

dating model parameters. The learning rate determines the step size towards minimizing

the loss function, with higher rates enabling faster updates but risking overshooting, and
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lower rates offering smoother but slower learning. The discount factor balances immediate

and future rewards. Mini-batch size is the number of samples processed before updating

parameters. The PS2 clipping range limits policy changes to stabilize training by clipping

probability ratios within 1± 0.2.

5.5.3 Results and Discussion

Fig. 5.4 shows the convergence of the proposed algorithm with a learning rate of 0.03.

It can be observed that the high learning rate causes significant policy fluctuations, high-

lighting DDPG’s limited learning effectiveness. In contrast, the proposed schemes out-

performs DDPG, with the PS2 achieving about 27% better sum-rate than the PS1. They

are also compared with DQN, ES, epsilon-greedy and random. DQN is inconsistent and

stabilizes at a lower sum-rate with minimal improvement. ES is highly variable and un-

reliable for larger, dynamic scenarios. Random selection of actions show consistent low

data rates, indicating no learning. Epsilon-greedy also stabilize at lower data rates. Note

that DQN and ES curve has been smoothed for better visualization.

Figure 5.4: Convergence of DRL algorithms with learning rate 0.03
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Figure 5.5: Convergence of DRL algorithms with learning rate 0.01.

Figure 5.6: Convergence of DRL algorithms with learning rate 0.0003
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We then reduced the learning rate to 0.01 to assess policy learning. Fig. 5.5 shows the

convergence of DRL algorithms at this rate. DDPG performs poorly, while PS2 outper-

forms PS1 by about 20%. DQN’s performance declines with more episodes, ES is highly

variable, random and epsilon-greedy shows constant data rates.

Fig. 5.6 and 5.7 demonstrates the convergence of the proposed algorithm’s achievable

sum-rate and mean power consumption as the learning rate decreases to 0.0003. Lower-

ing the learning rate facilitates smoother policy convergence, with PS1 exhibiting faster

learning compared to PS2 due to the latter’s clipping objective function.

In Fig. 5.6, PS1 and PS2 demonstrate the highest and most stable performance, with PS2

outperforming PS1. DDPG performs moderately. DQN is inconsistent and stabilizes at a

lower sum-rate with minimal improvement. ES showing higher variability and unreliabil-

ity for larger, dynamic scenarios. Thus, PS1 and PS2 are themost effective for maximizing

sum-rate, while DQN and ES remains impractical due to high variability. Random and

epsilon-greedy shows stagnancy and hence impractical for use.

Figure 5.7: Comparison of optimal transmit power utilization.
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Figure 5.8: Achievable sum-rate vs. room ceiling height

Fig. 5.7 compares the optimal transmit power of PS1, PS2, DDPG, DQN, ES, random, and

epsilon-greedy algorithms. DDPG shows high variability, while PS1 and PS2 are more

stable. PS1 stabilizes quickly around 90mW, and PS2 reaches 95mW,maintaining stability

around 82mW. Both PS1 and PS2 achieve stable performance with lower optimal transmit

power, about 30% and 32% better thanDDPG, respectively. For applications requiring low

transmission power and stability, PS1 and PS2 outperform DDPG. DQN exhibits higher

data rated and ES exhibits higher variance, hence less consistent performance. Random

selection of actions show constant transmit power, indicating no learning. Epsilon-greedy

methods show improvement over time but stabilize at higher power consumption. Thus,

random and epsilon-greedy are less effective, with the former showing no learning and

the latter consuming more power.
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Figure 5.9: Achievable sum-rate vs. FOV of receiver.

Figure 5.10: Convergence of DRL algorithms for scalability
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Figure 5.11: Convergence of DRL algorithms for ith AP.

Fig. 5.8 depicts the impact of ceiling height variation on achievable sum-rate, showing

a decrease as ceiling height increases due to larger receiver FOV resulting in increased

interference. Fig. 5.9 illustrates the decrease in achievable sum-rate with increased FOV.

Simulation results shows that DDPG,DQN, ES, Random and epsilon greedy are struggling

to learn while PS1 and PS2 performwell with large continuous action spaces. Also, higher

learning rates enable faster learning but reduce convergence stability.

Fig. 5.10 illustrates the performance in a 50m × 50m set-up to show the scalability of

proposed schemes. PS1 and PS2 achieves the highest sum-rate consistently. Both of them

outperform the baseline algorithms. DDPG struggles initially but shows stable conver-

gence later. ES and DQN shows high variability in performance throughout, with large

oscillations. Both epsilon-greedy and random performing poor and not learning effec-

tively.

Fig. 5.11 shows performance for ith AP. PS1 and PS2 perform consistently well, achiev-

ing high sum-rates relatively early and maintaining them. DDPG also shows stable per-
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formance. ES achieves a stable, high data rate but it is computationally intensive. DQN

fluctuates due to discretization and shows negligible improvement. Epsilon-greedy and

random fluctuates more and maintains a low, relatively constant sum-rate, as it does not

learn from the environment.

5.5.4 Discussion on Optimality and Performance Order

Both PS1 and PS2 are on-policy DRL techniques, while DDPG and DQN are off-

policy. On-policy algorithms learn the value of the executed policy, including explo-

ration, whereas off-policy algorithms learn from experiences in a replay buffer. Given the

dynamic environment, on-policy methods are favored for their stability and adaptability.

They utilize the advantage function to reduce variance and enhance learning precision.

PS2 effectively minimizes large policy changes with its clipped surrogate objective, mak-

ing it suitable for environments with large action spaces, like our hybrid RF/VLC system.

Additionally, PS2 is less sensitive to hyperparameter tuning, likely explaining the perfor-

mance order of PS2, PS1, and DDPG, as confirmed by our simulation results.

5.6 Conclusion

This study presents an on-policy DRL solution for the non-concave joint optimization

of dynamic resource allocation in hybrid RF/VLC networks, including load balancing.

The continuous action space involves association parameters, bandwidth, and transmis-

sion power. We applied PS1 and PS2, efficient model-free on-policy DRL algorithms, to

handle continuous action spaces. These algorithms demonstrated superior performance in

optimizing resource allocation within the dynamic environment. Simulation results show

that PS1 and PS2 achieve faster convergence and better data rates, improving up to 8.1%

and 9.7% compared to existing DDPG-based algorithms.
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Chapter 6

Conclusion and Future scope

This chapter concludes the research work presented in the thesis, highlighting the key

discoveries and new contributions. Several theories and algorithms were explored and

proposed during this study, which may expand the scope of future investigations. Addi-

tionally, we explored opportunities for further research based on the findings of this work.

In recent decades, interest in exploring machine learning and deep learning techniques in

resource allocation of hybrid RF/VLC systems and the HetNets area has grown widely.

This thesis evaluates the application of deep learning and DRL technologies for resource

allocation in hybrid RF/VLC systems. The resource allocation consists of parameters like

bandwidth, transmission power, and the association parameter. Our goal is to maximize

the achievable sum-rate of the hybrid RF/VLC systems. To achieve this, near-realistic

channel models, including blockage and random orientation, are proposed. It also explores

possible DRL techniques for efficient resource allocation. The contributions of this thesis

include creating near-realistic channel models, efficiently allocating resources, achieving

sum-rate maximization and exploring latest DRL algorithms. The thesis is organized into

chapters, each focusing on one of these contributions.

In Chapter 2, an overview of VLC, hybrid RF/VLC, deep learning and DRL techniques is

mentioned. The chapter explains the importance of resource allocation with focusing on

the issue of non-concavity in the joint optimization problem. It also presents a detailed
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review of machine learning and deep learning frameworks applied in the domain. Finally,

the chapter identifies gaps in existing research and suggests new algorithms and areas in

hybrid RF/VLC systems.

In Chapter 3, the joint optimization problem of resource allocation in hybrid WiFi/LiFi

systems is formed and solved with DQN. The proposed algorithm effectively optimizes

bandwidth, association parameters, and transmission power simultaneously. By using

DQN, the approach successfully resolves the non-concavity issue in this joint optimiza-

tion problem. The proposed DQN transfer learning algorithm is particularly beneficial

when a new UE enters the system. For the new UE, the algorithm utilizes existing data

from the nearest UE to improve efficiency. Simulations show that the proposed algorithm

achieves a higher sum-rate while requiring fewer iterations to converge. Also, when new

UEs are introduced, the algorithm reaches the maximum possible sum-rate with reduction

in the number of iterations.

In Chapter 4, we proposed a DRL algorithm that works in a continuous action space.

The proposed DDPG algorithm works efficiently with continuous action space for the

joint optimization problem. In addition to resource allocation, we also considered load

balancing in hybrid RF/LiFi systems. Remarkably, we tested this strategy in an environ-

ment that closely resembled a real-world scenario, which was created in a gymnasium

using Python. We compared our proposed DDPG algorithm with several well-established

DRL algorithms that are designed to handle both discrete and continuous action and state

spaces. The simulation results revealed that the proposed DDPG algorithm outperformed

the baseline strategies. DDPG not only efficiently handles continuous action spaces, but

also shows significantly better performance.

In Chapter 5, the study aims to provide an on-policy DRL based solution for optimizing

dynamic resource allocation in hybrid RF/VLC networks with consideration of load bal-

ancing. The study also considers the random orientation of UEs in the set-up. The joint

optimization considers variables such as association parameters, bandwidth, and trans-

mission power, all represented in a continuous action space. The continuous action space
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provides more accuracy while considering the random orientation of UEs. To handle this,

two efficient model-free on-policy DRL algorithms, A2C and PPO, were applied. These

algorithms improved resource distribution in the dynamic environment and achieved bet-

ter performance. Simulation results show that A2C and PPO offer faster convergence and

higher data rates than the baseline strategies.

6.1 Future Scope

• Multi-tier expansion: In this thesis, the proposed work on hybrid RF/VLC is an

example of two-tier HetNets. However, some future generation networks can have

three tier or multi-tier hybrid RF/VLC networks. Thus, an extension of the current

study in three or multi-tier HetNets could be a promising future direction for the

current research. Since HetNets consist of various types of cells, including macro,

micro, pico, and femtocells, which work together to enhance network coverage and

capacity. In 5G, HetNets leverage multiple radio access technologies and frequency

bands to meet the increasing demand for data rates and connectivity in large venues.

• Real Time Implementation: The proposed mechanism can be implemented in real

time test bed involving a combination of useful hardware and software. The three

main components for test bed implementation are transmitter, receiver, and signal

processing. The VLC component will use LED arrays as transmitters, positioned

strategically on the ceiling to provide coverage across the room. The RF AP, such

as a Wi-Fi router, can be installed to provide overlapping wireless coverage. Deep

learning algorithms proposed can be implemented on a server or a high-performance

computing unit that connects to both the VLC and RF networks. The deep learning

model receives real-time data on user positions, orientations, CSI, and QoS require-

ments, gathered through a combination of sensors, such as PDs for VLC. Use of

universal software radio peripheral (USRP) software defined radios (SDR) is cost

efficient and versatile to handle signal processing and connectivity. The USRP in-

terfaces with a host computer where DRL algorithms are implemented. The exe-
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cution of the DRL algorithms will allow the USRP to adapt its transmission power

and bandwidth dynamically, enabling efficient data distribution between the RF and

VLC components.

• Aerial expansion with multiple RF APs: The aerial expansion of the system involves

using multiple RF APs. This thesis work can be extended by increasing the number

of RF and VLC APs in larger areas. Adding more APs will help create a more

reliable and robust system setup.

• Theft Protection and Secrecy: The work in this thesis does not consider secrecy ca-

pacity. Theft protection and secrecy refer to measures designed to safeguard data

from unauthorized access or theft. Future workmay include secrecy capacity, which

ensures that sensitive information remains secure. By using this approach, the sys-

tem prevents illegitimate users from accessing or stealing the data.

• Emergency Situations: The current work, particularly in chapter 5, assumes normal

conditions in public places. Future extensions may consider disaster conditions,

such as when fire alarms are raised and users start rushing to the emergency exit

doors. In such indoor conditions, the user speeds may exceed 1.5 m/s. The number

of users in a particular area may change abruptly. Such a study can be significantly

helpful for aiding communication solutions to disaster management units.
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